Action Gaps and Advantages in Continuous-Time Distributional Reinforcement Learning
- URL: http://arxiv.org/abs/2410.11022v1
- Date: Mon, 14 Oct 2024 19:18:38 GMT
- Title: Action Gaps and Advantages in Continuous-Time Distributional Reinforcement Learning
- Authors: Harley Wiltzer, Marc G. Bellemare, David Meger, Patrick Shafto, Yash Jhaveri,
- Abstract summary: We show that action-conditioned return distributions collapse to their underlying policy's return distribution as the decision frequency increases.
We also introduce the superiority as a probabilistic generalization of the advantage.
Through simulations in an option-trading domain, we validate that proper modeling of the superiority distribution produces improved controllers at high decision frequencies.
- Score: 30.64409258999151
- License:
- Abstract: When decisions are made at high frequency, traditional reinforcement learning (RL) methods struggle to accurately estimate action values. In turn, their performance is inconsistent and often poor. Whether the performance of distributional RL (DRL) agents suffers similarly, however, is unknown. In this work, we establish that DRL agents are sensitive to the decision frequency. We prove that action-conditioned return distributions collapse to their underlying policy's return distribution as the decision frequency increases. We quantify the rate of collapse of these return distributions and exhibit that their statistics collapse at different rates. Moreover, we define distributional perspectives on action gaps and advantages. In particular, we introduce the superiority as a probabilistic generalization of the advantage -- the core object of approaches to mitigating performance issues in high-frequency value-based RL. In addition, we build a superiority-based DRL algorithm. Through simulations in an option-trading domain, we validate that proper modeling of the superiority distribution produces improved controllers at high decision frequencies.
Related papers
- Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.
We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)
Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.
We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - More Benefits of Being Distributional: Second-Order Bounds for
Reinforcement Learning [58.626683114119906]
We show that Distributional Reinforcement Learning (DistRL) can obtain second-order bounds in both online and offline RL.
Our results are the first second-order bounds for low-rank MDPs and for offline RL.
arXiv Detail & Related papers (2024-02-11T13:25:53Z) - Uncertainty-Penalized Reinforcement Learning from Human Feedback with
Diverse Reward LoRA Ensembles [26.955375398765085]
Reinforcement learning from human feedback (RLHF) emerges as a promising paradigm for aligning large language models (LLMs)
In this paper, we observe the weakness of KL regularization which is commonly employed in existing RLHF methods to address overoptimization.
We propose uncertainty-penalized RLHF (UP-RLHF), which incorporates uncertainty regularization during RL-finetuning.
arXiv Detail & Related papers (2023-12-30T14:14:14Z) - Noise Distribution Decomposition based Multi-Agent Distributional Reinforcement Learning [15.82785057592436]
Multi-Agent Reinforcement Learning (MARL) is more susceptible to noise due to the interference among intelligent agents.
We propose a novel decomposition-based multi-agent distributional RL method by approxing the globally shared noisy reward.
We also verify the effectiveness of the proposed method through extensive simulation experiments with noisy rewards.
arXiv Detail & Related papers (2023-12-12T07:24:15Z) - AlberDICE: Addressing Out-Of-Distribution Joint Actions in Offline
Multi-Agent RL via Alternating Stationary Distribution Correction Estimation [65.4532392602682]
One of the main challenges in offline Reinforcement Learning (RL) is the distribution shift that arises from the learned policy deviating from the data collection policy.
This is often addressed by avoiding out-of-distribution (OOD) actions during policy improvement as their presence can lead to substantial performance degradation.
We introduce AlberDICE, an offline MARL algorithm that performs centralized training of individual agents based on stationary distribution optimization.
arXiv Detail & Related papers (2023-11-03T18:56:48Z) - Policy Evaluation in Distributional LQR [70.63903506291383]
We provide a closed-form expression of the distribution of the random return.
We show that this distribution can be approximated by a finite number of random variables.
Using the approximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse LQR.
arXiv Detail & Related papers (2023-03-23T20:27:40Z) - How Does Return Distribution in Distributional Reinforcement Learning Help Optimization? [10.149055921090572]
We investigate the optimization advantages of distributional RL within the Neural Fitted Z-Iteration(Neural FZI) framework.
We show that distributional RL has desirable smoothness characteristics and hence enjoys stable gradients.
Our research findings illuminate how the return distribution in distributional RL algorithms helps the optimization.
arXiv Detail & Related papers (2022-09-29T02:18:31Z) - Distributional Reinforcement Learning for Multi-Dimensional Reward
Functions [91.88969237680669]
We introduce Multi-Dimensional Distributional DQN (MD3QN) to model the joint return distribution from multiple reward sources.
As a by-product of joint distribution modeling, MD3QN can capture the randomness in returns for each source of reward.
In experiments, our method accurately models the joint return distribution in environments with richly correlated reward functions.
arXiv Detail & Related papers (2021-10-26T11:24:23Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - The Benefits of Being Categorical Distributional: Uncertainty-aware
Regularized Exploration in Reinforcement Learning [18.525166928667876]
We attribute the potential superiority of distributional RL to a derived distribution-matching regularization by applying a return density function decomposition technique.
This unexplored regularization in the distributional RL context is aimed at capturing additional return distribution information regardless of only its expectation.
Tests substantiate the importance of this uncertainty-aware regularization in distributional RL on the empirical benefits over classical RL.
arXiv Detail & Related papers (2021-10-07T03:14:46Z) - Bayesian Distributional Policy Gradients [2.28438857884398]
Distributional Reinforcement Learning maintains the entire probability distribution of the reward-to-go, i.e. the return.
Bayesian Distributional Policy Gradients (BDPG) uses adversarial training in joint-contrastive learning to estimate a variational posterior from the returns.
arXiv Detail & Related papers (2021-03-20T23:42:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.