A Bilevel Optimization Framework for Imbalanced Data Classification
- URL: http://arxiv.org/abs/2410.11171v1
- Date: Tue, 15 Oct 2024 01:17:23 GMT
- Title: A Bilevel Optimization Framework for Imbalanced Data Classification
- Authors: Karen Medlin, Sven Leyffer, Krishnan Raghavan,
- Abstract summary: We propose a new undersampling approach that avoids the pitfalls of noise and overlap caused by synthetic data.
Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss.
Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it.
- Score: 1.6385815610837167
- License:
- Abstract: Data rebalancing techniques, including oversampling and undersampling, are a common approach to addressing the challenges of imbalanced data. To tackle unresolved problems related to both oversampling and undersampling, we propose a new undersampling approach that: (i) avoids the pitfalls of noise and overlap caused by synthetic data and (ii) avoids the pitfall of under-fitting caused by random undersampling. Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss. Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it. In so doing, our approach rejects majority datapoints redundant to datapoints already accepted and, thereby, finds an optimal subset of majority training data for classification. The accept/reject component of our algorithm is motivated by a bilevel optimization problem uniquely formulated to identify the optimal training set we seek. Experimental results show our proposed technique with F1 scores up to 10% higher than state-of-the-art methods.
Related papers
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Denoising after Entropy-based Debiasing A Robust Training Method for
Dataset Bias with Noisy Labels [12.335698325757491]
We propose an approach called denoising after entropy-based debiasing, i.e., DENEB, which has three main stages.
We find that running denoising algorithms before debiasing is ineffective because denoising algorithms reduce the impact of difficult-to-learn samples.
arXiv Detail & Related papers (2022-12-01T04:34:59Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - A Novel Hybrid Sampling Framework for Imbalanced Learning [0.0]
"SMOTE-RUS-NC" has been compared with other state-of-the-art sampling techniques.
Rigorous experimentation has been conducted on 26 imbalanced datasets.
arXiv Detail & Related papers (2022-08-20T07:04:00Z) - A Hybrid Approach for Binary Classification of Imbalanced Data [0.0]
We propose HADR, a hybrid approach with dimension reduction that consists of data block construction, dimentionality reduction, and ensemble learning.
We evaluate the performance on eight imbalanced public datasets in terms of recall, G-mean, and AUC.
arXiv Detail & Related papers (2022-07-06T15:18:41Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - A Method for Handling Multi-class Imbalanced Data by Geometry based
Information Sampling and Class Prioritized Synthetic Data Generation (GICaPS) [15.433936272310952]
This paper looks into the problem of handling imbalanced data in a multi-label classification problem.
Two novel methods are proposed that exploit the geometric relationship between the feature vectors.
The efficacy of the proposed methods is analyzed by solving a generic multi-class recognition problem.
arXiv Detail & Related papers (2020-10-11T04:04:26Z) - Weakly Supervised-Based Oversampling for High Imbalance and High
Dimensionality Data Classification [2.9283685972609494]
Oversampling is an effective method to solve imbalanced classification.
Inaccurate labels of synthetic samples would distort the distribution of the dataset.
This paper introduces the idea of weakly supervised learning to handle the inaccurate labeling of synthetic samples.
arXiv Detail & Related papers (2020-09-29T15:26:34Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
We consider the computational issues due to large sample size within the discriminant analysis framework.
We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis.
arXiv Detail & Related papers (2020-05-08T05:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.