DeltaDock: A Unified Framework for Accurate, Efficient, and Physically Reliable Molecular Docking
- URL: http://arxiv.org/abs/2410.11224v2
- Date: Wed, 16 Oct 2024 11:56:57 GMT
- Title: DeltaDock: A Unified Framework for Accurate, Efficient, and Physically Reliable Molecular Docking
- Authors: Jiaxian Yan, Zaixi Zhang, Jintao Zhu, Kai Zhang, Jianfeng Pei, Qi Liu,
- Abstract summary: Molecular docking is crucial in structure-based drug design for understanding protein-ligand interactions.
Recent advancements in docking methods have demonstrated significant efficiency and accuracy advantages over traditional sampling methods.
We propose a novel two-stage docking framework, DeltaDock, consisting of pocket prediction and site-specific docking.
- Score: 15.205550571902366
- License:
- Abstract: Molecular docking, a technique for predicting ligand binding poses, is crucial in structure-based drug design for understanding protein-ligand interactions. Recent advancements in docking methods, particularly those leveraging geometric deep learning (GDL), have demonstrated significant efficiency and accuracy advantages over traditional sampling methods. Despite these advancements, current methods are often tailored for specific docking settings, and limitations such as the neglect of protein side-chain structures, difficulties in handling large binding pockets, and challenges in predicting physically valid structures exist. To accommodate various docking settings and achieve accurate, efficient, and physically reliable docking, we propose a novel two-stage docking framework, DeltaDock, consisting of pocket prediction and site-specific docking. We innovatively reframe the pocket prediction task as a pocket-ligand alignment problem rather than direct prediction in the first stage. Then we follow a bi-level coarse-to-fine iterative refinement process to perform site-specific docking. Comprehensive experiments demonstrate the superior performance of DeltaDock. Notably, in the blind docking setting, DeltaDock achieves a 31\% relative improvement over the docking success rate compared with the previous state-of-the-art GDL model. With the consideration of physical validity, this improvement increases to about 300\%.
Related papers
- Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dock is a novel diffusion bridge generative model extended to geometric manifold.
We propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations.
Experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
arXiv Detail & Related papers (2024-02-18T05:04:50Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Rigid Protein-Protein Docking via Equivariant Elliptic-Paraboloid
Interface Prediction [19.73508673791042]
The study of rigid protein-protein docking plays an essential role in a variety of tasks such as drug design and protein engineering.
We propose a novel learning-based method called ElliDock, which predicts an elliptic paraboloid to represent the protein-protein docking interface.
By its design, ElliDock is independently equivariant with respect to arbitrary rotations/translations of the proteins.
arXiv Detail & Related papers (2024-01-17T05:39:03Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
Molecular docking is a key computational tool utilized to predict the binding conformations of small molecules to protein targets.
We introduce DeltaDock, a robust and versatile framework designed for efficient molecular docking.
arXiv Detail & Related papers (2023-11-30T14:09:20Z) - Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models [42.16524616409125]
In this work, we show that by pre-training on a large-scale docking conformation, we can obtain a protein-ligand structure prediction model with outstanding performance.
The proposed model, HelixDock, aims to acquire the physical knowledge encapsulated by the physics-based docking tools during the pre-training phase.
arXiv Detail & Related papers (2023-10-21T05:54:26Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$ is an end-to-end model that combines pocket prediction and docking to achieve accurate and fast protein-ligand binding.
Our proposed model demonstrates strong advantages in terms of effectiveness and efficiency compared to existing methods.
arXiv Detail & Related papers (2023-10-10T16:39:47Z) - DockGame: Cooperative Games for Multimeric Rigid Protein Docking [45.970633276976045]
We introduce DockGame, a novel game-theoretic framework for docking.
We view protein docking as a cooperative game between proteins, where the final assembly structure(s) constitute stable equilibria.
On the Docking Benchmark 5.5 dataset, DockGame has much faster runtimes than traditional docking methods.
arXiv Detail & Related papers (2023-10-09T22:02:05Z) - DSDP: A Blind Docking Strategy Accelerated by GPUs [6.221048348194304]
We take the advantage of both traditional and machine-learning based methods, and present a method Deep Site and Docking Pose (DSDP) to improve the performance of blind docking.
DSDP reaches a 2 top-1 success rate (RMSD 2 AA) on an unbiased and challenging test dataset with 1.2 s wall-clock computational time per system.
Its performances on DUD-E dataset and the time-split PDBBind dataset used in EquiBind, TankBind, and DiffDock are also effective.
arXiv Detail & Related papers (2023-03-16T07:00:21Z) - DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking [28.225704750892795]
Predicting the binding structure of a small molecule ligand to a protein is critical to drug design.
Recent deep learning methods that treat docking as a regression problem have decreased runtime compared to traditional search-based methods.
We frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses.
arXiv Detail & Related papers (2022-10-04T17:38:14Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.