Advancing the Understanding of Fixed Point Iterations in Deep Neural Networks: A Detailed Analytical Study
- URL: http://arxiv.org/abs/2410.11279v1
- Date: Tue, 15 Oct 2024 04:57:02 GMT
- Title: Advancing the Understanding of Fixed Point Iterations in Deep Neural Networks: A Detailed Analytical Study
- Authors: Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song,
- Abstract summary: We conduct a detailed analysis of fixed point iterations in a vector-valued function modeled by neural networks.
We establish a sufficient condition for the existence of multiple fixed points of looped neural networks based on varying input regions.
Our methodology may enhance our comprehension of neural network mechanisms.
- Score: 23.991344681741058
- License:
- Abstract: Recent empirical studies have identified fixed point iteration phenomena in deep neural networks, where the hidden state tends to stabilize after several layers, showing minimal change in subsequent layers. This observation has spurred the development of practical methodologies, such as accelerating inference by bypassing certain layers once the hidden state stabilizes, selectively fine-tuning layers to modify the iteration process, and implementing loops of specific layers to maintain fixed point iterations. Despite these advancements, the understanding of fixed point iterations remains superficial, particularly in high-dimensional spaces, due to the inadequacy of current analytical tools. In this study, we conduct a detailed analysis of fixed point iterations in a vector-valued function modeled by neural networks. We establish a sufficient condition for the existence of multiple fixed points of looped neural networks based on varying input regions. Additionally, we expand our examination to include a robust version of fixed point iterations. To demonstrate the effectiveness and insights provided by our approach, we provide case studies that looped neural networks may exist $2^d$ number of robust fixed points under exponentiation or polynomial activation functions, where $d$ is the feature dimension. Furthermore, our preliminary empirical results support our theoretical findings. Our methodology enriches the toolkit available for analyzing fixed point iterations of deep neural networks and may enhance our comprehension of neural network mechanisms.
Related papers
- Stabilizing RNN Gradients through Pre-training [3.335932527835653]
Theory of learning proposes to prevent the gradient from exponential growth with depth or time, to stabilize and improve training.
We extend known stability theories to encompass a broader family of deep recurrent networks, requiring minimal assumptions on data and parameter distribution.
We propose a new approach to mitigate this issue, that consists on giving a weight of a half to the time and depth contributions to the gradient.
arXiv Detail & Related papers (2023-08-23T11:48:35Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks [13.159994710917022]
In this paper, we present a local geometric analysis to interpret how deep feedforward neural networks extract low-dimensional features from high-dimensional data.
Our study shows that, in a local geometric region, the optimal weight in one layer of the neural network and the optimal feature generated by the previous layer comprise a low-rank approximation of a matrix that is determined by the Bayes action of this layer.
arXiv Detail & Related papers (2022-02-09T18:50:00Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Analytical aspects of non-differentiable neural networks [0.0]
We discuss the expressivity of quantized neural networks and approximation techniques for non-differentiable networks.
We show that QNNs have the same expressivity as DNNs in terms of approximation of Lipschitz functions in the $Linfty$ norm.
We also consider networks defined by means of Heaviside-type activation functions, and prove for them a pointwise approximation result by means of smooth networks.
arXiv Detail & Related papers (2020-11-03T17:20:43Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.