DRACO: A Denoising-Reconstruction Autoencoder for Cryo-EM
- URL: http://arxiv.org/abs/2410.11373v2
- Date: Mon, 28 Oct 2024 14:08:44 GMT
- Title: DRACO: A Denoising-Reconstruction Autoencoder for Cryo-EM
- Authors: Yingjun Shen, Haizhao Dai, Qihe Chen, Yan Zeng, Jiakai Zhang, Yuan Pei, Jingyi Yu,
- Abstract summary: DRACO is a Denoising-Reconstruction Autoencoder for cryogenic electron microscopy (cryo-EM) images.
We build a high-quality, diverse dataset from an uncurated public database, including over 270,000 movies or micrographs.
DRACO demonstrates the best performance in denoising, micrograph curation, and particle picking tasks compared to state-of-the-art baselines.
- Score: 27.092844681711195
- License:
- Abstract: Foundation models in computer vision have demonstrated exceptional performance in zero-shot and few-shot tasks by extracting multi-purpose features from large-scale datasets through self-supervised pre-training methods. However, these models often overlook the severe corruption in cryogenic electron microscopy (cryo-EM) images by high-level noises. We introduce DRACO, a Denoising-Reconstruction Autoencoder for CryO-EM, inspired by the Noise2Noise (N2N) approach. By processing cryo-EM movies into odd and even images and treating them as independent noisy observations, we apply a denoising-reconstruction hybrid training scheme. We mask both images to create denoising and reconstruction tasks. For DRACO's pre-training, the quality of the dataset is essential, we hence build a high-quality, diverse dataset from an uncurated public database, including over 270,000 movies or micrographs. After pre-training, DRACO naturally serves as a generalizable cryo-EM image denoiser and a foundation model for various cryo-EM downstream tasks. DRACO demonstrates the best performance in denoising, micrograph curation, and particle picking tasks compared to state-of-the-art baselines.
Related papers
- SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAE is a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data.
We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks.
Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods.
arXiv Detail & Related papers (2024-03-26T09:03:40Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - FSID: Fully Synthetic Image Denoising via Procedural Scene Generation [12.277286575812441]
We develop a procedural synthetic data generation pipeline and dataset tailored to low-level vision tasks.
Our Unreal engine-based synthetic data pipeline populates large scenes algorithmically with a combination of random 3D objects, materials, and geometric transformations.
We then trained and validated a CNN-based denoising model, and demonstrated that the model trained on this synthetic data alone can achieve competitive denoising results.
arXiv Detail & Related papers (2022-12-07T21:21:55Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
We introduce Noise2Same, a novel self-supervised denoising framework.
In particular, Noise2Same requires neither J-invariance nor extra information about the noise model.
Our results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods.
arXiv Detail & Related papers (2020-10-22T18:12:26Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
We introduce the idea of a cGAN which explicitly leverages structure in the image noise space.
By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold.
Based on our experiments, our model substantially outperforms existing state-of-the-art architectures.
arXiv Detail & Related papers (2020-02-11T00:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.