Transformer Layer Injection: A Novel Approach for Efficient Upscaling of Large Language Models
- URL: http://arxiv.org/abs/2410.11654v1
- Date: Tue, 15 Oct 2024 14:41:44 GMT
- Title: Transformer Layer Injection: A Novel Approach for Efficient Upscaling of Large Language Models
- Authors: James Vo,
- Abstract summary: Transformer Layer Injection (TLI) is a novel method for efficiently upscaling large language models (LLMs)
Our approach improves upon the conventional Depth Up-Scaling (DUS) technique by injecting new layers into every set of K layers.
- Score: 0.0
- License:
- Abstract: In this paper, we propose Transformer Layer Injection (TLI), a novel method for efficiently upscaling large language models (LLMs) while minimizing computational costs and maintaining model performance. Model scale is a key factor in enhancing the quality of machine learning models, and TLI addresses the challenge of scaling by reducing initial loss, minimizing fine-tuning requirements, and preserving model complexity. Our approach improves upon the conventional Depth Up-Scaling (DUS) technique by injecting new layers into every set of K layers, enabling hidden representations to pass through transformer blocks with minimal disruption. We compare TLI with existing approaches, including Mixture of Experts (MoE) and DUS, and validate its efficiency through experiments on small LLMs (LLama3 1B, 3B, and 8B). Results show that TLI achieves better initialization, requires fewer training steps, and delivers superior accuracy on tasks such as KoBEST and KMCQA, with models performing effectively even without additional training. TLI is demonstrated to be both data-efficient and cost-effective, significantly outperforming existing methods. Its scalability and simplicity make it a promising solution for upscaling transformer-based models, with potential applications in scaling models from 10B to 405B parameters.
Related papers
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
We propose a pruning pipeline for semi-structured sparse models via retraining, termed Adaptive Sparse Trainer (AST)
AST transforms dense models into sparse ones by applying decay to masked weights while allowing the model to adaptively select masks throughout the training process.
Our work demonstrates the feasibility of deploying semi-structured sparse large language models and introduces a novel method for achieving highly compressed models.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - Efficient GPT Model Pre-training using Tensor Train Matrix
Representation [65.96485282393361]
Large-scale transformer models feature billions of parameters, leading to difficulties in their deployment and prohibitive training costs from scratch.
To reduce the number of parameters in the GPT-2 architecture, we replace the matrices of fully-connected layers with the corresponding Train Matrix(TTM) structure.
The resulting GPT-based model stores up to 40% fewer parameters, showing the perplexity comparable to the original model.
arXiv Detail & Related papers (2023-06-05T08:38:25Z) - READ: Recurrent Adaptation of Large Transformers [7.982905666062059]
Fine-tuning large-scale Transformers becomes impractical as the model size and number of tasks increase.
We introduce textbfREcurrent textbfADaption (READ) -- a lightweight and memory-efficient fine-tuning method.
arXiv Detail & Related papers (2023-05-24T16:59:41Z) - MiniALBERT: Model Distillation via Parameter-Efficient Recursive
Transformers [12.432191400869002]
MiniALBERT is a technique for converting the knowledge of fully parameterised LMs (such as BERT) into a compact recursive student.
We test our proposed models on a number of general and biomedical NLP tasks to demonstrate their viability and compare them with the state-of-the-art and other existing compact models.
arXiv Detail & Related papers (2022-10-12T17:23:21Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute.
We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps.
This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models.
arXiv Detail & Related papers (2020-02-26T21:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.