Heterogeneous Graph Generation: A Hierarchical Approach using Node Feature Pooling
- URL: http://arxiv.org/abs/2410.11972v1
- Date: Tue, 15 Oct 2024 18:23:25 GMT
- Title: Heterogeneous Graph Generation: A Hierarchical Approach using Node Feature Pooling
- Authors: Hritaban Ghosh, Chen Changyu, Arunesh Sinha, Shamik Sural,
- Abstract summary: Heterogeneous graphs are present in various domains, such as social networks, recommendation systems, and biological networks.
In this paper, we look into solving challenges in heterogeneous graph generation, by employing a two phase hierarchical structure.
A discriminator is used to guide training of the generator and feature vectors are sampled from a node feature pool.
- Score: 11.082657770873876
- License:
- Abstract: Heterogeneous graphs are present in various domains, such as social networks, recommendation systems, and biological networks. Unlike homogeneous graphs, heterogeneous graphs consist of multiple types of nodes and edges, each representing different entities and relationships. Generating realistic heterogeneous graphs that capture the complex interactions among diverse entities is a difficult task due to several reasons. The generator has to model both the node type distribution along with the feature distribution for each node type. In this paper, we look into solving challenges in heterogeneous graph generation, by employing a two phase hierarchical structure, wherein the first phase creates a skeleton graph with node types using a prior diffusion based model and in the second phase, we use an encoder and a sampler structure as generator to assign node type specific features to the nodes. A discriminator is used to guide training of the generator and feature vectors are sampled from a node feature pool. We conduct extensive experiments with subsets of IMDB and DBLP datasets to show the effectiveness of our method and also the need for various architecture components.
Related papers
- Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - HMSG: Heterogeneous Graph Neural Network based on Metapath Subgraph
Learning [2.096172374930129]
We propose a new heterogeneous graph neural network model named HMSG.
We decompose the heterogeneous graph into multiple subgraphs.
Each subgraph associates specific semantic and structural information.
Through a type-specific attribute transformation, node attributes can also be transferred among different types of nodes.
arXiv Detail & Related papers (2021-09-07T05:02:59Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Het-node2vec: second order random walk sampling for heterogeneous multigraphs embedding [0.9084022224205381]
Het-node2vec is an extension of the node2vec algorithm for embedding heterogeneous graphs.
We show that Het-node2vec achieves comparable or superior performance with respect to state-of-the-art methods for heterogeneous graphs in node label and edge prediction tasks.
arXiv Detail & Related papers (2021-01-05T09:38:02Z) - Tree Structure-Aware Graph Representation Learning via Integrated
Hierarchical Aggregation and Relational Metric Learning [26.8738194817491]
We propose T-GNN, a tree structure-aware graph neural network model for graph representation learning.
The proposed T-GNN consists of two modules: (1) the integrated hierarchical aggregation module and (2) the relational metric learning module.
arXiv Detail & Related papers (2020-08-23T09:41:19Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
We present GEM, the first heterogeneous graph neural network approach for detecting malicious accounts.
We learn discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation.
Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
arXiv Detail & Related papers (2020-02-27T18:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.