Age-of-Gradient Updates for Federated Learning over Random Access Channels
- URL: http://arxiv.org/abs/2410.11986v1
- Date: Tue, 15 Oct 2024 18:49:58 GMT
- Title: Age-of-Gradient Updates for Federated Learning over Random Access Channels
- Authors: Yu Heng Wu, Houman Asgari, Stefano Rini, Andrea Munari,
- Abstract summary: We study the problem of federated training of a deep neural network (DNN) over a random access channel (RACH)
The RACH-FL setting crucially addresses the problem of jointly designing a (i) client selection and (ii) gradient compression strategy.
We propose a policy, which we term the ''age-of-gradient'' (AoG) policy in which (i) gradient sparsification is performed using top-K sparsification, (ii) the error correction is performed using memory accumulation, and (iii) the slot transmission probability is obtained by comparing the current local memory
- Score: 13.337006106442738
- License:
- Abstract: This paper studies the problem of federated training of a deep neural network (DNN) over a random access channel (RACH) such as in computer networks, wireless networks, and cellular systems. More precisely, a set of remote users participate in training a centralized DNN model using SGD under the coordination of a parameter server (PS). The local model updates are transmitted from the remote users to the PS over a RACH using a slotted ALOHA protocol. The PS collects the updates from the remote users, accumulates them, and sends central model updates to the users at regular time intervals. We refer to this setting as the RACH-FL setting. The RACH-FL setting crucially addresses the problem of jointly designing a (i) client selection and (ii) gradient compression strategy which addresses the communication constraints between the remote users and the PS when transmission occurs over a RACH. For the RACH-FL setting, we propose a policy, which we term the ''age-of-gradient'' (AoG) policy in which (i) gradient sparsification is performed using top-K sparsification, (ii) the error correction is performed using memory accumulation, and (iii) the slot transmission probability is obtained by comparing the current local memory magnitude minus the magnitude of the gradient update to a threshold. Intuitively, the AoG measure of ''freshness'' of the memory state is reminiscent of the concept of age-of-information (AoI) in the context of communication theory and provides a rather natural interpretation of this policy. Numerical simulations show the superior performance of the AoG policy as compared to other RACH-FL policies.
Related papers
- Fed-ZOE: Communication-Efficient Over-the-Air Federated Learning via Zeroth-Order Estimation [15.026407830543086]
Fed-ZOE is an efficient framework inspired by the randomized gradient estimator (RGE) commonly used in zeroth-order optimization (ZOO)
Fed-ZOE achieves performance comparable to Fed-OtA while drastically reducing communication costs.
arXiv Detail & Related papers (2024-12-21T21:24:58Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Adaptive Coded Federated Learning: Privacy Preservation and Straggler Mitigation [33.56146654796337]
A coded federated learning framework has been proposed to mitigate the negative impact of stragglers.
We propose a new method named adaptive coded federated learning (ACFL) to overcome this drawback.
arXiv Detail & Related papers (2024-03-22T01:51:48Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
We propose the age of semantics (AoS) for measuring semantics freshness of status updates in a cooperative relay communication system.
We derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework.
We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset.
arXiv Detail & Related papers (2022-09-19T11:55:28Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Wireless Federated Learning with Limited Communication and Differential
Privacy [21.328507360172203]
This paper investigates the role of dimensionality reduction in efficient communication and differential privacy (DP) of the local datasets at the remote users for over-the-air computation (AirComp)-based federated learning (FL) model.
arXiv Detail & Related papers (2021-06-01T15:23:12Z) - A Reinforcement Learning Approach to Age of Information in Multi-User
Networks with HARQ [1.5469452301122177]
Scheduling the transmission of time-sensitive information from a source node to multiple users over error-prone communication channels is studied.
Long-term average resource constraint is imposed on the source, which limits the average number of transmissions.
arXiv Detail & Related papers (2021-02-19T07:30:44Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Multi-Armed Bandit Based Client Scheduling for Federated Learning [91.91224642616882]
federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy.
In each communication round of FL, the clients update local models based on their own data and upload their local updates via wireless channels.
This work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients.
arXiv Detail & Related papers (2020-07-05T12:32:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.