Taking off the Rose-Tinted Glasses: A Critical Look at Adversarial ML Through the Lens of Evasion Attacks
- URL: http://arxiv.org/abs/2410.12076v1
- Date: Tue, 15 Oct 2024 21:33:23 GMT
- Title: Taking off the Rose-Tinted Glasses: A Critical Look at Adversarial ML Through the Lens of Evasion Attacks
- Authors: Kevin Eykholt, Farhan Ahmed, Pratik Vaishnavi, Amir Rahmati,
- Abstract summary: We argue that overly permissive attack and overly restrictive defensive threat models have hampered defense development in the ML domain.
We analyze adversarial machine learning from a system security perspective rather than an AI perspective.
- Score: 11.830908033835728
- License:
- Abstract: The vulnerability of machine learning models in adversarial scenarios has garnered significant interest in the academic community over the past decade, resulting in a myriad of attacks and defenses. However, while the community appears to be overtly successful in devising new attacks across new contexts, the development of defenses has stalled. After a decade of research, we appear no closer to securing AI applications beyond additional training. Despite a lack of effective mitigations, AI development and its incorporation into existing systems charge full speed ahead with the rise of generative AI and large language models. Will our ineffectiveness in developing solutions to adversarial threats further extend to these new technologies? In this paper, we argue that overly permissive attack and overly restrictive defensive threat models have hampered defense development in the ML domain. Through the lens of adversarial evasion attacks against neural networks, we critically examine common attack assumptions, such as the ability to bypass any defense not explicitly built into the model. We argue that these flawed assumptions, seen as reasonable by the community based on paper acceptance, have encouraged the development of adversarial attacks that map poorly to real-world scenarios. In turn, new defenses evaluated against these very attacks are inadvertently required to be almost perfect and incorporated as part of the model. But do they need to? In practice, machine learning models are deployed as a small component of a larger system. We analyze adversarial machine learning from a system security perspective rather than an AI perspective and its implications for emerging AI paradigms.
Related papers
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
Our proposal suggests a different approach to the AI Guardian framework.
Instead of including adversarial examples in the training process, we propose training the AI system without them.
This aims to create a system that is inherently resilient to a wider range of attacks.
arXiv Detail & Related papers (2024-05-03T04:08:15Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
Recent works have identified a gap between research and practice in artificial intelligence security.
We revisit the threat models of the six most studied attacks in AI security research and match them to AI usage in practice.
arXiv Detail & Related papers (2023-11-16T16:09:44Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
Existing model stealing defenses add deceptive perturbations to the victim's posterior probabilities to mislead the attackers.
This paper proposes Isolation and Induction (InI), a novel and effective training framework for model stealing defenses.
In contrast to adding perturbations over model predictions that harm the benign accuracy, we train models to produce uninformative outputs against stealing queries.
arXiv Detail & Related papers (2023-08-02T05:54:01Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Towards Evaluating the Robustness of Neural Networks Learned by
Transduction [44.189248766285345]
Greedy Model Space Attack (GMSA) is an attack framework that can serve as a new baseline for evaluating transductive-learning based defenses.
We show that GMSA, even with weak instantiations, can break previous transductive-learning based defenses.
arXiv Detail & Related papers (2021-10-27T19:39:50Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
In recent years, most AI models are vulnerable to advanced and sophisticated hacking techniques.
This challenge has motivated concerted research efforts into adversarial AI.
We present a holistic cyber security review that demonstrates adversarial attacks against AI applications.
arXiv Detail & Related papers (2021-02-09T06:06:13Z) - An Analysis of Adversarial Attacks and Defenses on Autonomous Driving
Models [15.007794089091616]
Convolutional neural network (CNN) is a key component in autonomous driving.
Previous work shows CNN-based classification models are vulnerable to adversarial attacks.
This paper presents an in-depth analysis of five adversarial attacks and four defense methods on three driving models.
arXiv Detail & Related papers (2020-02-06T09:49:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.