Test-time adaptation for image compression with distribution regularization
- URL: http://arxiv.org/abs/2410.12191v1
- Date: Wed, 16 Oct 2024 03:25:16 GMT
- Title: Test-time adaptation for image compression with distribution regularization
- Authors: Kecheng Chen, Pingping Zhang, Tiexin Qin, Shiqi Wang, Hong Yan, Haoliang Li,
- Abstract summary: We introduce a simple Bayesian approximation-endowed textit distribution regularization to encourage learning a better joint probability approximation in a plug-and-play manner.
Our proposed method not only improves the R-D performance compared with other latent refinement counterparts, but also can be flexibly integrated into existing TTA-IC methods with incremental benefits.
- Score: 43.490138269939344
- License:
- Abstract: Current test- or compression-time adaptation image compression (TTA-IC) approaches, which leverage both latent and decoder refinements as a two-step adaptation scheme, have potentially enhanced the rate-distortion (R-D) performance of learned image compression models on cross-domain compression tasks, \textit{e.g.,} from natural to screen content images. However, compared with the emergence of various decoder refinement variants, the latent refinement, as an inseparable ingredient, is barely tailored to cross-domain scenarios. To this end, we aim to develop an advanced latent refinement method by extending the effective hybrid latent refinement (HLR) method, which is designed for \textit{in-domain} inference improvement but shows noticeable degradation of the rate cost in \textit{cross-domain} tasks. Specifically, we first provide theoretical analyses, in a cue of marginalization approximation from in- to cross-domain scenarios, to uncover that the vanilla HLR suffers from an underlying mismatch between refined Gaussian conditional and hyperprior distributions, leading to deteriorated joint probability approximation of marginal distribution with increased rate consumption. To remedy this issue, we introduce a simple Bayesian approximation-endowed \textit{distribution regularization} to encourage learning a better joint probability approximation in a plug-and-play manner. Extensive experiments on six in- and cross-domain datasets demonstrate that our proposed method not only improves the R-D performance compared with other latent refinement counterparts, but also can be flexibly integrated into existing TTA-IC methods with incremental benefits.
Related papers
- Direct Distributional Optimization for Provable Alignment of Diffusion Models [39.048284342436666]
We introduce a novel alignment method for diffusion models from distribution optimization perspectives.
We first formulate the problem as a generic regularized loss minimization over probability distributions.
We enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique.
arXiv Detail & Related papers (2025-02-05T07:35:15Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Reducing Semantic Ambiguity In Domain Adaptive Semantic Segmentation Via Probabilistic Prototypical Pixel Contrast [7.092718945468069]
Domain adaptation aims to reduce the model degradation on the target domain caused by the domain shift between the source and target domains.
Probabilistic proto-typical pixel contrast (PPPC) is a universal adaptation framework that models each pixel embedding as a probability.
PPPC not only helps to address ambiguity at the pixel level, yielding discriminative representations but also significant improvements in both synthetic-to-real and day-to-night adaptation tasks.
arXiv Detail & Related papers (2024-09-27T08:25:03Z) - Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
We propose a novel algorithm for distributed gradient descent (SGD) with compressed gradient communication in the parameter-server framework.
Our gradient compression technique, named flattened one-bit gradient descent (FO-SGD), relies on two simple algorithmic ideas.
arXiv Detail & Related papers (2024-05-17T21:17:27Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - Learned Image Compression with Generalized Octave Convolution and
Cross-Resolution Parameter Estimation [5.238765582868391]
We propose a learned multi-resolution image compression framework, which exploits octave convolutions to factorize the latent representations into the high-resolution (HR) and low-resolution (LR) parts.
Experimental results show that our method separately reduces the decoding time by approximately 73.35 % and 93.44 % compared with that of state-of-the-art learned image compression methods.
arXiv Detail & Related papers (2022-09-07T08:21:52Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Recursive Inference for Variational Autoencoders [34.552283758419506]
Inference networks of traditional Variational Autoencoders (VAEs) are typically amortized.
Recent semi-amortized approaches were proposed to address this drawback.
We introduce an accurate amortized inference algorithm.
arXiv Detail & Related papers (2020-11-17T10:22:12Z) - Improving Inference for Neural Image Compression [31.999462074510305]
State-of-the-art methods build on hierarchical variational autoencoders to predict a compressible latent representation of each data point.
We identify three approximation gaps which limit performance in the conventional approach.
We propose remedies for each of these three limitations based on ideas related to iterative inference.
arXiv Detail & Related papers (2020-06-07T19:26:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.