Self-Supervised Learning of Disentangled Representations for Multivariate Time-Series
- URL: http://arxiv.org/abs/2410.12606v2
- Date: Mon, 21 Oct 2024 06:27:47 GMT
- Title: Self-Supervised Learning of Disentangled Representations for Multivariate Time-Series
- Authors: Ching Chang, Chiao-Tung Chan, Wei-Yao Wang, Wen-Chih Peng, Tien-Fu Chen,
- Abstract summary: TimeDRL is a framework for multivariate time-series representation learning with dual-level disentangled embeddings.
TimeDRL features: (i) timestamp-level and instance-level embeddings using a [] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases.
Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data.
- Score: 10.99576829280084
- License:
- Abstract: Multivariate time-series data in fields like healthcare and industry are informative but challenging due to high dimensionality and lack of labels. Recent self-supervised learning methods excel in learning rich representations without labels but struggle with disentangled embeddings and inductive bias issues like transformation-invariance. To address these challenges, we introduce TimeDRL, a framework for multivariate time-series representation learning with dual-level disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases. Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data.
Related papers
- Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - TimeDRL: Disentangled Representation Learning for Multivariate Time-Series [10.99576829280084]
TimeDRL is a generic time-series representation learning framework with disentangled dual-level embeddings.
TimeDRL consistently surpasses existing representation learning approaches, achieving an average improvement of 58.02% in MSE and classification by 1.48% in accuracy.
arXiv Detail & Related papers (2023-12-07T08:56:44Z) - T-Rep: Representation Learning for Time Series using Time-Embeddings [5.885238773559017]
We propose T-Rep, a self-supervised method to learn time series representations at a timestep granularity.
T-Rep learns vector embeddings of time alongside its feature extractor, to extract temporal features.
We evaluate T-Rep on downstream classification, forecasting, and anomaly detection tasks.
arXiv Detail & Related papers (2023-10-06T15:45:28Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Unsupervised Representation Learning for Time Series: A Review [20.00853543048447]
Unsupervised representation learning approaches aim to learn discriminative feature representations from unlabeled data, without the requirement of annotating every sample.
We conduct a literature review of existing rapidly evolving unsupervised representation learning approaches for time series.
We empirically evaluate state-of-the-art approaches, especially the rapidly evolving contrastive learning methods, on 9 diverse real-world datasets.
arXiv Detail & Related papers (2023-08-03T07:28:06Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
Multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training.
This paper discusses the feasibility of continual CLIP training using streaming data.
arXiv Detail & Related papers (2023-05-11T08:04:46Z) - Self-supervised Transformer for Multivariate Clinical Time-Series with
Missing Values [7.9405251142099464]
We present STraTS (Self-supervised Transformer for TimeSeries) model.
It treats time-series as a set of observation triplets instead of using the traditional dense matrix representation.
It shows better prediction performance than state-of-theart methods for mortality prediction, especially when labeled data is limited.
arXiv Detail & Related papers (2021-07-29T19:39:39Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS) is a novel disentanglement enhancement framework for sequential data.
DTS generates hierarchical semantic concepts as the interpretable and disentangled representation of time-series.
DTS achieves superior performance in downstream applications, with high interpretability of semantic concepts.
arXiv Detail & Related papers (2021-05-17T22:02:24Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.