VividMed: Vision Language Model with Versatile Visual Grounding for Medicine
- URL: http://arxiv.org/abs/2410.12694v1
- Date: Wed, 16 Oct 2024 15:54:11 GMT
- Title: VividMed: Vision Language Model with Versatile Visual Grounding for Medicine
- Authors: Lingxiao Luo, Bingda Tang, Xuanzhong Chen, Rong Han, Ting Chen,
- Abstract summary: We present VividMed, a vision language model with versatile visual grounding for medicine.
Our model supports generating both semantic segmentation masks and instance-level bounding boxes.
VividMed also excels in other common downstream tasks, including Visual Question Answering (VQA) and report generation.
- Score: 5.653365935720789
- License:
- Abstract: Recent advancements in Vision Language Models (VLMs) have demonstrated remarkable promise in generating visually grounded responses. However, their application in the medical domain is hindered by unique challenges. For instance, most VLMs rely on a single method of visual grounding, whereas complex medical tasks demand more versatile approaches. Additionally, while most VLMs process only 2D images, a large portion of medical images are 3D. The lack of medical data further compounds these obstacles. To address these challenges, we present VividMed, a vision language model with versatile visual grounding for medicine. Our model supports generating both semantic segmentation masks and instance-level bounding boxes, and accommodates various imaging modalities, including both 2D and 3D data. We design a three-stage training procedure and an automatic data synthesis pipeline based on open datasets and models. Besides visual grounding tasks, VividMed also excels in other common downstream tasks, including Visual Question Answering (VQA) and report generation. Ablation studies empirically show that the integration of visual grounding ability leads to improved performance on these tasks. Our code is publicly available at https://github.com/function2-llx/MMMM.
Related papers
- Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding [9.144030136201476]
Multimodal large language models (MLLMs) inherit the superior text understanding capabilities of LLMs and extend these capabilities to multimodal scenarios.
These models achieve excellent results in the general domain of multimodal tasks.
However, in the medical domain, the substantial training costs and the requirement for extensive medical data pose challenges to the development of medical MLLMs.
arXiv Detail & Related papers (2024-10-31T11:07:26Z) - LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
State-of-the-art medical multi-modal large language models (med-MLLM) leverage instruction-following data in pre-training.
LoGra-Med is a new multi-graph alignment algorithm that enforces triplet correlations across image modalities, conversation-based descriptions, and extended captions.
Our results show LoGra-Med matches LLAVA-Med performance on 600K image-text pairs for Medical VQA and significantly outperforms it when trained on 10% of the data.
arXiv Detail & Related papers (2024-10-03T15:52:03Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
We propose an Unified Medical Image Pre-training framework, namely UniMedI.
UniMedI uses diagnostic reports as common semantic space to create unified representations for diverse modalities of medical images.
We evaluate its performance on both 2D and 3D images across 10 different datasets.
arXiv Detail & Related papers (2023-11-24T22:01:12Z) - Med-Flamingo: a Multimodal Medical Few-shot Learner [58.85676013818811]
We propose Med-Flamingo, a multimodal few-shot learner adapted to the medical domain.
Based on OpenFlamingo-9B, we continue pre-training on paired and interleaved medical image-text data from publications and textbooks.
We conduct the first human evaluation for generative medical VQA where physicians review the problems and blinded generations in an interactive app.
arXiv Detail & Related papers (2023-07-27T20:36:02Z) - Masked Vision and Language Pre-training with Unimodal and Multimodal
Contrastive Losses for Medical Visual Question Answering [7.669872220702526]
We present a novel self-supervised approach that learns unimodal and multimodal feature representations of input images and text.
The proposed approach achieves state-of-the-art (SOTA) performance on three publicly available medical VQA datasets.
arXiv Detail & Related papers (2023-07-11T15:00:11Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Self-supervised vision-language pretraining for Medical visual question
answering [9.073820229958054]
We propose a self-supervised method that applies Masked image modeling, Masked language modeling, Image text matching and Image text alignment via contrastive learning (M2I2) for pretraining.
The proposed method achieves state-of-the-art performance on all the three public medical VQA datasets.
arXiv Detail & Related papers (2022-11-24T13:31:56Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
We propose a self-supervised learning paradigm with multi-modal masked autoencoders.
We learn cross-modal domain knowledge by reconstructing missing pixels and tokens from randomly masked images and texts.
arXiv Detail & Related papers (2022-09-15T07:26:43Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks.
In contrast to previous models, UViM has the same functional form for all tasks.
We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks.
arXiv Detail & Related papers (2022-05-20T17:47:59Z) - MMBERT: Multimodal BERT Pretraining for Improved Medical VQA [23.78515287446131]
We propose a solution inspired by self-supervised pretraining of Transformer-style architectures for NLP, Vision and Language tasks.
Our method involves learning richer medical image and text semantic representations using Masked Language Modeling.
The proposed solution achieves new state-of-the-art performance on two VQA datasets for radiology images.
arXiv Detail & Related papers (2021-04-03T13:01:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.