Language Model Preference Evaluation with Multiple Weak Evaluators
- URL: http://arxiv.org/abs/2410.12869v1
- Date: Mon, 14 Oct 2024 01:57:25 GMT
- Title: Language Model Preference Evaluation with Multiple Weak Evaluators
- Authors: Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, Ranjay Krishna,
- Abstract summary: GED (Preference Graph Ensemble and Denoise) is a novel approach that leverages multiple model-based evaluators to construct preference graphs.
We show that GED outperforms baseline methods in model ranking, response selection, and model alignment tasks.
- Score: 78.53743237977677
- License:
- Abstract: Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. Existing works usually leverage a powerful LLM (e.g., GPT4) as the judge for comparing LLMs' output pairwisely, yet such model-based evaluator is vulnerable to conflicting preference, i.e., output A is better than B, B than C, but C than A, causing contradictory evaluation results. To improve model-based preference evaluation, we introduce GED (Preference Graph Ensemble and Denoise), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensemble and denoise these graphs for better, non-contradictory evaluation results. In particular, our method consists of two primary stages: aggregating evaluations into a unified graph and applying a denoising process to eliminate cyclic inconsistencies, ensuring a directed acyclic graph (DAG) structure. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments across ten benchmark datasets show that GED outperforms baseline methods in model ranking, response selection, and model alignment tasks. Notably, GED combines weaker evaluators like Llama3-8B, Mistral-7B, and Qwen2-7B to surpass the performance of stronger evaluators like Qwen2-72B, highlighting its ability to enhance evaluation reliability and improve model performance.
Related papers
- Offline Model-Based Optimization by Learning to Rank [26.21886715050762]
We argue that regression models trained with mean squared error (MSE) are not well-aligned with the primary goal of offline model-based optimization.
We propose learning a ranking-based model that leverages learning to rank techniques to prioritize promising designs based on their relative scores.
arXiv Detail & Related papers (2024-10-15T11:15:03Z) - Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z) - Self-Taught Evaluators [77.92610887220594]
We present an approach that aims to im-proves without human annotations, using synthetic training data only.
Our Self-Taught Evaluator can improve a strong LLM from 75.4 to 88.3 on RewardBench.
arXiv Detail & Related papers (2024-08-05T17:57:02Z) - An Optimism-based Approach to Online Evaluation of Generative Models [23.91197677628145]
We propose an online evaluation framework to find the generative model that maximizes a standard assessment score among a group of available models.
Specifically, we study the online assessment of generative models based on the Fr'echet Inception Distance (FID) and Inception Score (IS) metrics.
arXiv Detail & Related papers (2024-06-11T16:57:48Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.