Language Model Preference Evaluation with Multiple Weak Evaluators
- URL: http://arxiv.org/abs/2410.12869v3
- Date: Sat, 01 Feb 2025 19:08:49 GMT
- Title: Language Model Preference Evaluation with Multiple Weak Evaluators
- Authors: Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, Ranjay Krishna,
- Abstract summary: GED (Preference Graph Ensemble and Denoise) is a novel approach that leverages multiple model-based evaluators to construct preference graphs.
In particular, our method consists of two primary stages: aggregating evaluations into a unified graph and applying a denoising process.
We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure.
- Score: 78.53743237977677
- License:
- Abstract: Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding *preference* remains a critical challenge. Existing works usually leverage an LLM as the judge for comparing LLMs' output pairwisely, yet such model-based evaluator is *weak evaluator* due to *conflicting preference*, i.e., output A is better than B, B than C, but C than A, causing contradictory evaluation results. To address this, we introduce GED (Preference Graph Ensemble and Denoise), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensemble and denoise these graphs for better, non-contradictory evaluation results. In particular, our method consists of two primary stages: aggregating evaluations into a unified graph and applying a denoising process to eliminate cyclic inconsistencies, ensuring a directed acyclic graph (DAG) structure. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate GED's superiority in three applications: model ranking, response selection, and model alignment tasks. Notably, GED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform stronger ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
Related papers
- Language Models are Few-Shot Graders [0.12289361708127876]
We present an ASAG pipeline leveraging state-of-the-art LLMs.
We compare the grading performance of three OpenAI models: GPT-4, GPT-4o, and o1-preview.
Our findings indicate that providing graded examples enhances grading accuracy, with RAG-based selection outperforming random selection.
arXiv Detail & Related papers (2025-02-18T23:38:21Z) - Offline Model-Based Optimization by Learning to Rank [26.21886715050762]
We argue that regression models trained with mean squared error (MSE) are not well-aligned with the primary goal of offline model-based optimization.
We propose learning a ranking-based model that leverages learning to rank techniques to prioritize promising designs based on their relative scores.
arXiv Detail & Related papers (2024-10-15T11:15:03Z) - Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z) - Self-Taught Evaluators [77.92610887220594]
We present an approach that aims to im-proves without human annotations, using synthetic training data only.
Our Self-Taught Evaluator can improve a strong LLM from 75.4 to 88.3 on RewardBench.
arXiv Detail & Related papers (2024-08-05T17:57:02Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations [10.709365940160685]
Modern large language models (LLMs) are hard to evaluate and compare automatically.
We propose a peer rank (PR) algorithm that takes into account each peer LLM's pairwise preferences of all answer pairs.
We find that our approaches achieve higher accuracy and align better with human judgments.
arXiv Detail & Related papers (2023-07-06T04:05:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.