MIND: Math Informed syNthetic Dialogues for Pretraining LLMs
- URL: http://arxiv.org/abs/2410.12881v1
- Date: Tue, 15 Oct 2024 18:25:53 GMT
- Title: MIND: Math Informed syNthetic Dialogues for Pretraining LLMs
- Authors: Syeda Nahida Akter, Shrimai Prabhumoye, John Kamalu, Sanjeev Satheesh, Eric Nyberg, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro,
- Abstract summary: We propose a novel large-scale and diverse Math Informed syNthetic Dialogue (MIND) generation method.
MIND generates synthetic conversations based on OpenWebMath (OWM), resulting in a new math corpus, MIND-OWM.
Our experiments with different conversational settings reveal that incorporating knowledge gaps between dialog participants is essential for generating high-quality math data.
- Score: 34.498175178707065
- License:
- Abstract: The utility of synthetic data to enhance pretraining data quality and hence to improve downstream task accuracy has been widely explored in recent large language models (LLMs). Yet, these approaches fall inadequate in complex, multi-hop and mathematical reasoning tasks as the synthetic data typically fails to add complementary knowledge to the existing raw corpus. In this work, we propose a novel large-scale and diverse Math Informed syNthetic Dialogue (MIND) generation method that improves the mathematical reasoning ability of LLMs. Specifically, using MIND, we generate synthetic conversations based on OpenWebMath (OWM), resulting in a new math corpus, MIND-OWM. Our experiments with different conversational settings reveal that incorporating knowledge gaps between dialog participants is essential for generating high-quality math data. We further identify an effective way to format and integrate synthetic and raw data during pretraining to maximize the gain in mathematical reasoning, emphasizing the need to restructure raw data rather than use it as-is. Compared to pretraining just on raw data, a model pretrained on MIND-OWM shows significant boost in mathematical reasoning (GSM8K: +13.42%, MATH: +2.30%), including superior performance in specialized knowledge (MMLU: +4.55%, MMLU-STEM: +4.28%) and general purpose reasoning tasks (GENERAL REASONING: +2.51%).
Related papers
- MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code [38.127313175508746]
We introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining.
Our approach begins with the construction of a high-quality mathematical continued pretraining dataset.
Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code.
arXiv Detail & Related papers (2024-10-10T17:58:40Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning [13.728595670907136]
We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning.
Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH.
arXiv Detail & Related papers (2024-08-09T08:18:20Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models [110.45794710162241]
Existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs to synthesize massive math problems.
We propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data.
We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model, which only needs to invoke GPT-4 API 9.3k times and pre-train on 4.6B data.
arXiv Detail & Related papers (2024-05-23T09:43:19Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
We present MathSensei, a tool-augmented large language model for mathematical reasoning.
We study the complementary benefits of the tools - knowledge retriever (Bing Web Search), program generator + executor (Python), and symbolic equation solver (Wolfram-Alpha API)
arXiv Detail & Related papers (2024-02-27T05:50:35Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
We postulate that the inherent nature of large language models (LLMs) presents challenges in modeling mathematical reasoning.
This paper introduces a novel math dataset, enhanced with a capability to utilize a Python code interpreter.
We propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs.
arXiv Detail & Related papers (2024-01-16T08:08:01Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILA is a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions.
We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs.
We introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA.
arXiv Detail & Related papers (2022-10-31T17:41:26Z) - KnowDA: All-in-One Knowledge Mixture Model for Data Augmentation in
Few-Shot NLP [68.43279384561352]
Existing data augmentation algorithms leverage task-independent rules or fine-tune general-purpose pre-trained language models.
These methods have trivial task-specific knowledge and are limited to yielding low-quality synthetic data for weak baselines in simple tasks.
We propose the Knowledge Mixture Data Augmentation Model (KnowDA): an encoder-decoder LM pretrained on a mixture of diverse NLP tasks.
arXiv Detail & Related papers (2022-06-21T11:34:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.