Channel-Wise Mixed-Precision Quantization for Large Language Models
- URL: http://arxiv.org/abs/2410.13056v2
- Date: Fri, 01 Nov 2024 03:16:30 GMT
- Title: Channel-Wise Mixed-Precision Quantization for Large Language Models
- Authors: Zihan Chen, Bike Xie, Jundong Li, Cong Shen,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable success across a wide range of language tasks.
Weight-only quantization presents a promising solution to reduce the memory footprint of LLMs.
We introduce Channel-Wise Mixed-Precision Quantization (CMPQ), a novel mixed-precision quantization method.
- Score: 47.00361921910259
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable success across a wide range of language tasks, but their deployment on edge devices remains challenging due to the substantial memory requirements imposed by their large parameter sizes. Weight-only quantization presents a promising solution to reduce the memory footprint of LLMs. However, existing approaches primarily focus on integer-bit quantization, limiting their adaptability to fractional-bit quantization tasks and preventing the full utilization of available storage space on devices. In this paper, we introduce Channel-Wise Mixed-Precision Quantization (CMPQ), a novel mixed-precision quantization method that allocates quantization precision in a channel-wise pattern based on activation distributions. By assigning different precision levels to different weight channels, CMPQ can adapt to any bit-width constraint. CMPQ employs a non-uniform quantization strategy and incorporates two outlier extraction techniques that collaboratively preserve the critical information, thereby minimizing the quantization loss. Experiments on different sizes of LLMs demonstrate that CMPQ not only enhances performance in integer-bit quantization tasks but also achieves significant performance gains with a modest increase in memory usage. CMPQ thus represents an adaptive and effective approach to LLM quantization, offering substantial benefits across diverse device capabilities.
Related papers
- QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
Quantization has been substantially adopted to accelerate inference and reduce memory consumption of large language models.
We propose a novel quantization paradigm called QSPEC, which seamlessly integrates two complementary quantization schemes for speculative decoding.
QSPEC empirically boosts token generation throughput by up to 1.80x without any quality compromise.
arXiv Detail & Related papers (2024-10-15T05:57:51Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process.
This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers.
arXiv Detail & Related papers (2024-02-19T11:33:21Z) - ApiQ: Finetuning of 2-Bit Quantized Large Language Model [12.328293460903911]
ApiQ is designed to restore the lost information from quantization by concurrently initializing the LoRA components and quantizing the weights of LLMs.
It consistently achieves superior finetuning results across various bit-widths.
arXiv Detail & Related papers (2024-02-07T09:36:54Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance.
Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths.
arXiv Detail & Related papers (2022-05-30T21:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.