Mapping Bias in Vision Language Models: Signposts, Pitfalls, and the Road Ahead
- URL: http://arxiv.org/abs/2410.13146v1
- Date: Thu, 17 Oct 2024 02:03:27 GMT
- Title: Mapping Bias in Vision Language Models: Signposts, Pitfalls, and the Road Ahead
- Authors: Kuleen Sasse, Shan Chen, Jackson Pond, Danielle Bitterman, John Osborne,
- Abstract summary: We analyze demographic biases across five models and six datasets.
Portrait datasets like UTKFace and CelebA are the best tools for bias detection.
We introduce a more difficult version of VisoGender to serve as a more rigorous evaluation.
- Score: 1.3995965887921709
- License:
- Abstract: As Vision Language Models (VLMs) gain widespread use, their fairness remains under-explored. In this paper, we analyze demographic biases across five models and six datasets. We find that portrait datasets like UTKFace and CelebA are the best tools for bias detection, finding gaps in performance and fairness between LLaVa and CLIP models. However, scene based datasets like PATA, VLStereoSet fail to be useful benchmarks for bias due to their construction. As for pronoun based datasets like VisoGender, we receive mixed signals as only some subsets of the data are useful in providing insights. To alleviate this problem, we introduce a more difficult version of VisoGender to serve as a more rigorous evaluation. Based on these results, we call for more effective and carefully designed datasets to ensure VLMs are both fair and reliable.
Related papers
- What Are We Measuring When We Evaluate Large Vision-Language Models? An Analysis of Latent Factors and Biases [87.65903426052155]
We perform a large-scale transfer learning experiment aimed at discovering latent vision-language skills from data.
We show that generation tasks suffer from a length bias, suggesting benchmarks should balance tasks with varying output lengths.
We present a new dataset, OLIVE, which simulates user instructions in the wild and presents challenges dissimilar to all datasets we tested.
arXiv Detail & Related papers (2024-04-03T02:40:35Z) - DeAR: Debiasing Vision-Language Models with Additive Residuals [5.672132510411465]
Large pre-trained vision-language models (VLMs) provide rich, adaptable image and text representations.
These models suffer from societal biases owing to the skewed distribution of various identity groups in the training data.
We present DeAR, a novel debiasing method that learns additive residual image representations to offset the original representations.
arXiv Detail & Related papers (2023-03-18T14:57:43Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - A First Look at Dataset Bias in License Plate Recognition [1.8496815029347666]
dataset bias has been recognized as a severe problem in the computer vision community.
This work investigates the dataset bias problem in the License Plate Recognition context.
arXiv Detail & Related papers (2022-08-23T00:20:33Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z) - Greedy Gradient Ensemble for Robust Visual Question Answering [163.65789778416172]
We stress the language bias in Visual Question Answering (VQA) that comes from two aspects, i.e., distribution bias and shortcut bias.
We propose a new de-bias framework, Greedy Gradient Ensemble (GGE), which combines multiple biased models for unbiased base model learning.
GGE forces the biased models to over-fit the biased data distribution in priority, thus makes the base model pay more attention to examples that are hard to solve by biased models.
arXiv Detail & Related papers (2021-07-27T08:02:49Z) - REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets [64.76453161039973]
REVISE (REvealing VIsual biaSEs) is a tool that assists in the investigation of a visual dataset.
It surfacing potential biases along three dimensions: (1) object-based, (2) person-based, and (3) geography-based.
arXiv Detail & Related papers (2020-04-16T23:54:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.