DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
- URL: http://arxiv.org/abs/2410.13571v3
- Date: Mon, 25 Nov 2024 07:02:47 GMT
- Title: DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
- Authors: Guosheng Zhao, Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Xueyang Zhang, Yida Wang, Guan Huang, Xinze Chen, Boyuan Wang, Youyi Zhang, Wenjun Mei, Xingang Wang,
- Abstract summary: We introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors.
To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios.
- Score: 32.19534057884047
- License:
- Abstract: Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos, where structured conditions are explicitly leveraged to control the spatial-temporal consistency of traffic elements. Besides, the cousin data training strategy is proposed to facilitate merging real and synthetic data for optimizing 4DGS. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 32.1%, 46.4%, and 16.3% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 22.6%, 43.5%, and 15.6% in the NTA-IoU metric.
Related papers
- DreamDrive: Generative 4D Scene Modeling from Street View Images [55.45852373799639]
We present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction.
Specifically, we leverage the generative power of video diffusion models to synthesize a sequence of visual references.
We then render 3D-consistent driving videos via Gaussian splatting.
arXiv Detail & Related papers (2024-12-31T18:59:57Z) - Stag-1: Towards Realistic 4D Driving Simulation with Video Generation Model [83.31688383891871]
We propose a Spatial-Temporal simulAtion for drivinG (Stag-1) model to reconstruct real-world scenes.
Stag-1 constructs continuous 4D point cloud scenes using surround-view data from autonomous vehicles.
It decouples spatial-temporal relationships and produces coherent driving videos.
arXiv Detail & Related papers (2024-12-06T18:59:56Z) - ReconDreamer: Crafting World Models for Driving Scene Reconstruction via Online Restoration [30.755679955159504]
ReconDreamer enhances driving scene reconstruction through incremental integration of world model knowledge.
To the best of our knowledge, ReconDreamer is the first method to effectively render in large maneuvers.
arXiv Detail & Related papers (2024-11-29T08:47:46Z) - DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - Driving in the Occupancy World: Vision-Centric 4D Occupancy Forecasting and Planning via World Models for Autonomous Driving [15.100104512786107]
Drive-OccWorld adapts a visioncentric- 4D forecasting world model to end-to-end planning for autonomous driving.
We propose injecting flexible action conditions, such as velocity, steering angle, trajectory, and commands, into the world model to enable controllable generation.
Our method can generate plausible and controllable 4D occupancy, paving the way for advancements in driving world generation and end-to-end planning.
arXiv Detail & Related papers (2024-08-26T11:53:09Z) - OccSora: 4D Occupancy Generation Models as World Simulators for Autonomous Driving [62.54220021308464]
We propose a diffusion-based 4D occupancy generation model, OccSora, to simulate the development of the 3D world for autonomous driving.
OccSora can generate 16s-videos with authentic 3D layout and temporal consistency, demonstrating its ability to understand the spatial and temporal distributions of driving scenes.
arXiv Detail & Related papers (2024-05-30T17:59:42Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.