Sample Compression Hypernetworks: From Generalization Bounds to Meta-Learning
- URL: http://arxiv.org/abs/2410.13577v1
- Date: Thu, 17 Oct 2024 14:12:35 GMT
- Title: Sample Compression Hypernetworks: From Generalization Bounds to Meta-Learning
- Authors: Benjamin Leblanc, Mathieu Bazinet, Nathaniel D'Amours, Alexandre Drouin, Pascal Germain,
- Abstract summary: Reconstruction functions are pivotal in sample compression theory.
We derive a new sample compression generalization bound for real-valued messages.
We present a new hypernetwork architecture that outputs predictors with tight generalization guarantees.
- Score: 47.83977297248753
- License:
- Abstract: Reconstruction functions are pivotal in sample compression theory, a framework for deriving tight generalization bounds. From a small sample of the training set (the compression set) and an optional stream of information (the message), they recover a predictor previously learned from the whole training set. While usually fixed, we propose to learn reconstruction functions. To facilitate the optimization and increase the expressiveness of the message, we derive a new sample compression generalization bound for real-valued messages. From this theoretical analysis, we then present a new hypernetwork architecture that outputs predictors with tight generalization guarantees when trained using an original meta-learning framework. The results of promising preliminary experiments are then reported.
Related papers
- Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses [9.180445799821717]
We present a general framework for deriving new sample compression bounds that hold for real-valued unbounded losses.
We empirically demonstrate the tightness of the bounds and their versatility by evaluating them on random forests and multiple types of neural networks.
arXiv Detail & Related papers (2024-09-26T15:08:52Z) - Convolutional Neural Network Compression Based on Low-Rank Decomposition [3.3295360710329738]
This paper proposes a model compression method that integrates Variational Bayesian Matrix Factorization.
VBMF is employed to estimate the rank of the weight tensor at each layer.
Experimental results show that for both high and low compression ratios, our compression model exhibits advanced performance.
arXiv Detail & Related papers (2024-08-29T06:40:34Z) - Real-World Compositional Generalization with Disentangled
Sequence-to-Sequence Learning [81.24269148865555]
A recently proposed Disentangled sequence-to-sequence model (Dangle) shows promising generalization capability.
We introduce two key modifications to this model which encourage more disentangled representations and improve its compute and memory efficiency.
Specifically, instead of adaptively re-encoding source keys and values at each time step, we disentangle their representations and only re-encode keys periodically.
arXiv Detail & Related papers (2022-12-12T15:40:30Z) - Disentangled Sequence to Sequence Learning for Compositional
Generalization [62.954842223732435]
We propose an extension to sequence-to-sequence models which allows us to learn disentangled representations by adaptively re-encoding the source input.
Experimental results on semantic parsing and machine translation empirically show that our proposal yields more disentangled representations and better generalization.
arXiv Detail & Related papers (2021-10-09T22:27:19Z) - Regularization-Agnostic Compressed Sensing MRI Reconstruction with
Hypernetworks [21.349071909858218]
We present a novel strategy of using a hypernetwork to generate the parameters of a separate reconstruction network as a function of the regularization weight(s)
At test time, for a given under-sampled image, our model can rapidly compute reconstructions with different amounts of regularization.
We analyze the variability of these reconstructions, especially in situations when the overall quality is similar.
arXiv Detail & Related papers (2021-01-06T18:55:37Z) - Unfolding Neural Networks for Compressive Multichannel Blind
Deconvolution [71.29848468762789]
We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution.
In this problem, each channel's measurements are given as convolution of a common source signal and sparse filter.
We demonstrate that our method is superior to classical structured compressive sparse multichannel blind-deconvolution methods in terms of accuracy and speed of sparse filter recovery.
arXiv Detail & Related papers (2020-10-22T02:34:33Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
We propose a new approach based on differential inclusions of inverse scale spaces.
We show that DessiLBI unveils "winning tickets" in early epochs.
arXiv Detail & Related papers (2020-07-04T04:40:16Z) - Robust Sampling in Deep Learning [62.997667081978825]
Deep learning requires regularization mechanisms to reduce overfitting and improve generalization.
We address this problem by a new regularization method based on distributional robust optimization.
During the training, the selection of samples is done according to their accuracy in such a way that the worst performed samples are the ones that contribute the most in the optimization.
arXiv Detail & Related papers (2020-06-04T09:46:52Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.