ORSO: Accelerating Reward Design via Online Reward Selection and Policy Optimization
- URL: http://arxiv.org/abs/2410.13837v2
- Date: Sun, 20 Oct 2024 00:23:14 GMT
- Title: ORSO: Accelerating Reward Design via Online Reward Selection and Policy Optimization
- Authors: Chen Bo Calvin Zhang, Zhang-Wei Hong, Aldo Pacchiano, Pulkit Agrawal,
- Abstract summary: Online Reward Selection and Policy Optimization (ORSO) is a novel approach that frames shaping reward selection as an online model selection problem.
ORSO employs principled exploration strategies to automatically identify promising shaping reward functions without human intervention.
We demonstrate ORSO's effectiveness across various continuous control tasks using the Isaac Gym simulator.
- Score: 41.074747242532695
- License:
- Abstract: Reward shaping is a critical component in reinforcement learning (RL), particularly for complex tasks where sparse rewards can hinder learning. While shaping rewards have been introduced to provide additional guidance, selecting effective shaping functions remains challenging and computationally expensive. This paper introduces Online Reward Selection and Policy Optimization (ORSO), a novel approach that frames shaping reward selection as an online model selection problem. ORSO employs principled exploration strategies to automatically identify promising shaping reward functions without human intervention, balancing exploration and exploitation with provable regret guarantees. We demonstrate ORSO's effectiveness across various continuous control tasks using the Isaac Gym simulator. Compared to traditional methods that fully evaluate each shaping reward function, ORSO significantly improves sample efficiency, reduces computational time, and consistently identifies high-quality reward functions that produce policies comparable to those generated by domain experts through hand-engineered rewards.
Related papers
- REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Behavior Alignment via Reward Function Optimization [23.92721220310242]
We introduce a new framework that integrates auxiliary rewards reflecting a designer's domain knowledge with the environment's primary rewards.
We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges.
arXiv Detail & Related papers (2023-10-29T13:45:07Z) - Benchmarking Potential Based Rewards for Learning Humanoid Locomotion [10.406358397515838]
Well-designed shaping reward can lead to significantly faster learning.
In theory, the broad class of potential based reward shaping (PBRS) can help guide the learning process without affecting the optimal policy.
In this paper, we benchmark standard forms of shaping with PBRS for a humanoid robot.
arXiv Detail & Related papers (2023-07-19T17:12:28Z) - Automatic Intrinsic Reward Shaping for Exploration in Deep Reinforcement
Learning [55.2080971216584]
We present AIRS: Automatic Intrinsic Reward Shaping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL)
We develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches.
arXiv Detail & Related papers (2023-01-26T01:06:46Z) - Unpacking Reward Shaping: Understanding the Benefits of Reward
Engineering on Sample Complexity [114.88145406445483]
Reinforcement learning provides an automated framework for learning behaviors from high-level reward specifications.
In practice the choice of reward function can be crucial for good results.
arXiv Detail & Related papers (2022-10-18T04:21:25Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Hindsight Reward Tweaking via Conditional Deep Reinforcement Learning [37.61951923445689]
We propose a novel paradigm for deep reinforcement learning to model the influences of reward functions within a near-optimal space.
We demonstrate the feasibility of this approach and study one of its potential application in policy performance boosting with multiple MuJoCo tasks.
arXiv Detail & Related papers (2021-09-06T10:06:48Z) - Self-Supervised Online Reward Shaping in Sparse-Reward Environments [36.01839934355542]
We propose a novel reinforcement learning framework that performs self-supervised online reward shaping.
The proposed framework alternates between updating a policy and inferring a reward function.
Experimental results on several sparse-reward environments demonstrate that the proposed algorithm is significantly more sample efficient than the state-of-the-art baseline.
arXiv Detail & Related papers (2021-03-08T03:28:04Z) - Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping [71.214923471669]
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL)
In this paper, we consider the problem of adaptively utilizing a given shaping reward function.
Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards.
arXiv Detail & Related papers (2020-11-05T05:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.