Differentiable Robot Rendering
- URL: http://arxiv.org/abs/2410.13851v1
- Date: Thu, 17 Oct 2024 17:59:02 GMT
- Title: Differentiable Robot Rendering
- Authors: Ruoshi Liu, Alper Canberk, Shuran Song, Carl Vondrick,
- Abstract summary: We introduce differentiable robot rendering, a method allowing the visual appearance of a robot body to be directly differentiable with respect to its control parameters.
We demonstrate its capability and usage in applications including reconstruction of robot poses from images and controlling robots through vision language models.
- Score: 45.23538293501457
- License:
- Abstract: Vision foundation models trained on massive amounts of visual data have shown unprecedented reasoning and planning skills in open-world settings. A key challenge in applying them to robotic tasks is the modality gap between visual data and action data. We introduce differentiable robot rendering, a method allowing the visual appearance of a robot body to be directly differentiable with respect to its control parameters. Our model integrates a kinematics-aware deformable model and Gaussians Splatting and is compatible with any robot form factors and degrees of freedom. We demonstrate its capability and usage in applications including reconstruction of robot poses from images and controlling robots through vision language models. Quantitative and qualitative results show that our differentiable rendering model provides effective gradients for robotic control directly from pixels, setting the foundation for the future applications of vision foundation models in robotics.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
This paper presents a unified approach using vision-language models (VLMs) to improve keypoint prediction across various garment categories.
We created a large-scale synthetic dataset using advanced simulation techniques, allowing scalable training without extensive real-world data.
Experimental results indicate that the VLM-based method significantly enhances keypoint detection accuracy and task success rates.
arXiv Detail & Related papers (2024-09-26T17:26:16Z) - Theia: Distilling Diverse Vision Foundation Models for Robot Learning [6.709078873834651]
Theia is a vision foundation model for robot learning that distills multiple off-the-shelf vision foundation models trained on varied vision tasks.
Theia's rich visual representations encode diverse visual knowledge, enhancing downstream robot learning.
arXiv Detail & Related papers (2024-07-29T17:08:21Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGen is a novel framework that integrates differentiable physics simulation, differentiable rendering, and a vision-language model.
It can generate realistic robot demonstrations by minimizing the distance between the embedding of the language instruction and the embedding of the simulated observation.
Experiments demonstrate that with DiffGen, we could efficiently and effectively generate robot data with minimal human effort or training time.
arXiv Detail & Related papers (2024-05-12T15:38:17Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - RoboCraft: Learning to See, Simulate, and Shape Elasto-Plastic Objects
with Graph Networks [32.00371492516123]
We present a model-based planning framework for modeling and manipulating elasto-plastic objects.
Our system, RoboCraft, learns a particle-based dynamics model using graph neural networks (GNNs) to capture the structure of the underlying system.
We show through experiments that with just 10 minutes of real-world robotic interaction data, our robot can learn a dynamics model that can be used to synthesize control signals to deform elasto-plastic objects into various target shapes.
arXiv Detail & Related papers (2022-05-05T20:28:15Z) - Full-Body Visual Self-Modeling of Robot Morphologies [29.76701883250049]
Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions.
Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data.
Here, we propose that instead of directly modeling forward-kinematics, a more useful form of self-modeling is one that could answer space occupancy queries.
arXiv Detail & Related papers (2021-11-11T18:58:07Z) - Single-view robot pose and joint angle estimation via render & compare [40.05546237998603]
We introduce RoboPose, a method to estimate the joint angles and the 6D camera-to-robot pose of a known articulated robot from a single RGB image.
This is an important problem to grant mobile and itinerant autonomous systems the ability to interact with other robots.
arXiv Detail & Related papers (2021-04-19T14:48:29Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.