PUMA: Empowering Unified MLLM with Multi-granular Visual Generation
- URL: http://arxiv.org/abs/2410.13861v2
- Date: Mon, 21 Oct 2024 15:42:46 GMT
- Title: PUMA: Empowering Unified MLLM with Multi-granular Visual Generation
- Authors: Rongyao Fang, Chengqi Duan, Kun Wang, Hao Li, Hao Tian, Xingyu Zeng, Rui Zhao, Jifeng Dai, Hongsheng Li, Xihui Liu,
- Abstract summary: We propose PUMA, emPowering Unified MLLM with Multi-grAnular visual generation.
PUMA unifies multi-granular visual features as both inputs and outputs of MLLMs.
This work represents a significant step towards a truly unified MLLM capable of adapting to the granularity demands of various visual tasks.
- Score: 62.747751204215916
- License:
- Abstract: Recent advancements in multimodal foundation models have yielded significant progress in vision-language understanding. Initial attempts have also explored the potential of multimodal large language models (MLLMs) for visual content generation. However, existing works have insufficiently addressed the varying granularity demands of different image generation tasks within a unified MLLM paradigm - from the diversity required in text-to-image generation to the precise controllability needed in image manipulation. In this work, we propose PUMA, emPowering Unified MLLM with Multi-grAnular visual generation. PUMA unifies multi-granular visual features as both inputs and outputs of MLLMs, elegantly addressing the different granularity requirements of various image generation tasks within a unified MLLM framework. Following multimodal pretraining and task-specific instruction tuning, PUMA demonstrates proficiency in a wide range of multimodal tasks. This work represents a significant step towards a truly unified MLLM capable of adapting to the granularity demands of various visual tasks. The code and model will be released in https://github.com/rongyaofang/PUMA.
Related papers
- Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
Task Preference Optimization (TPO) is a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks.
By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance.
Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models.
arXiv Detail & Related papers (2024-12-26T18:56:05Z) - Personalizing Multimodal Large Language Models for Image Captioning: An Experimental Analysis [44.008094698200026]
This paper investigates whether Multimodal LLMs can supplant traditional image captioning networks by evaluating their performance on various image description benchmarks.
We explore both the zero-shot capabilities of these models and their adaptability to different semantic domains through fine-tuning methods.
Our results demonstrate that while Multimodal LLMs achieve impressive zero-shot performance, fine-tuning for specific domains while maintaining their generalization capabilities intact remains challenging.
arXiv Detail & Related papers (2024-12-04T19:01:06Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - LLMBind: A Unified Modality-Task Integration Framework [38.95771765322677]
We introduce textbfLLMBind, a novel framework designed to unify a diverse array of multi-modal tasks.
By harnessing a Mixture-of-Experts (MoE) Large Language Model (LLM), LLMBind processes multi-modal inputs and generates task-specific tokens, enabling the invocation of corresponding models to accomplish tasks.
arXiv Detail & Related papers (2024-02-22T12:36:31Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
We present a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings.
Based on our proposed joint mixing, we propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images.
We hope our work may cast a light on the exploration of joint mixing in future MLLM research.
arXiv Detail & Related papers (2023-11-13T18:59:47Z) - Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and
Text Integration [50.94902442781148]
We propose a novel multi-modal large language model (LLM) that seamlessly integrates visual, audio, and textual information.
Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations.
We construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances.
arXiv Detail & Related papers (2023-06-15T12:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.