Ensemble-based, large-eddy reconstruction of wind turbine inflow in a near-stationary atmospheric boundary layer through generative artificial intelligence
- URL: http://arxiv.org/abs/2410.14024v1
- Date: Thu, 17 Oct 2024 20:53:04 GMT
- Title: Ensemble-based, large-eddy reconstruction of wind turbine inflow in a near-stationary atmospheric boundary layer through generative artificial intelligence
- Authors: Alex Rybchuk, Luis A. MartÃnez-Tossas, Stefano Letizia, Nicholas Hamilton, Andy Scholbrock, Emina Maric, Daniel R. Houck, Thomas G. Herges, Nathaniel B. de Velder, Paula Doubrawa,
- Abstract summary: We develop a technique for time-resolved inflow reconstruction rooted in a large-eddy simulation model of the atmosphere.
Our "large-eddy reconstruction" technique blends observations and atmospheric model information through a diffusion model machine learning algorithm.
We verify the second-by-second reconstruction capability of our technique in three synthetic field campaigns.
- Score: 0.0
- License:
- Abstract: To validate the second-by-second dynamics of turbines in field experiments, it is necessary to accurately reconstruct the winds going into the turbine. Current time-resolved inflow reconstruction techniques estimate wind behavior in unobserved regions using relatively simple spectral-based models of the atmosphere. Here, we develop a technique for time-resolved inflow reconstruction that is rooted in a large-eddy simulation model of the atmosphere. Our "large-eddy reconstruction" technique blends observations and atmospheric model information through a diffusion model machine learning algorithm, allowing us to generate probabilistic ensembles of reconstructions for a single 10-min observational period. Our generated inflows can be used directly by aeroelastic codes or as inflow boundary conditions in a large-eddy simulation. We verify the second-by-second reconstruction capability of our technique in three synthetic field campaigns, finding positive Pearson correlation coefficient values (0.20>r>0.85) between ground-truth and reconstructed streamwise velocity, as well as smaller positive correlation coefficient values for unobserved fields (spanwise velocity, vertical velocity, and temperature). We validate our technique in three real-world case studies by driving large-eddy simulations with reconstructed inflows and comparing to independent inflow measurements. The reconstructions are visually similar to measurements, follow desired power spectra properties, and track second-by-second behavior (0.25 > r > 0.75).
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
We propose a framework based on Vari Data Assimilation and Deep Learning concepts.
This framework is applied to recover rich-in-time, high-resolution information on sea surface wind speed.
arXiv Detail & Related papers (2023-12-14T13:40:39Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Generative convective parametrization of dry atmospheric boundary layer [0.0]
Turbulence parametrizations will remain a necessary building block in kilometer-scale Earth system models.
We present a parametrization for a dry convective boundary layer based on a generative adversarial network.
Our work paves the way to efficient data-driven convective parametrizations in other natural flows.
arXiv Detail & Related papers (2023-07-27T13:37:29Z) - Ensemble flow reconstruction in the atmospheric boundary layer from
spatially limited measurements through latent diffusion models [0.32955181898067526]
Machine learning techniques have previously reconstructed unobserved regions of flow in canonical fluid mechanics problems.
These techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer.
arXiv Detail & Related papers (2023-03-01T21:55:10Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Direct data-driven forecast of local turbulent heat flux in
Rayleigh-B\'{e}nard convection [0.0]
Two-dimensional turbulent Rayleigh-B'enard convection flow at Prandtl number $rm Pr=7$ and Rayleigh number $rm Ra=107$.
Two recurrent neural networks are applied for the temporal advancement of flow data in the reduced latent data space.
Convolutional autoencoder with 12 hidden layers is able to reduce the dimensionality of the turbulence data to about 0.2 % of their original size.
arXiv Detail & Related papers (2022-02-26T12:39:19Z) - Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine
Learning [0.0]
We use real-world light detection and ranging (LiDAR) measurements of wind-turbine wakes to construct predictive surrogate models using machine learning.
We find that our approach provides accurate approximations of the wind-turbine wake flow field that can be queried at an orders-of-magnitude cheaper cost than those generated with high-fidelity physics-based simulations.
arXiv Detail & Related papers (2021-09-06T14:46:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.