Human Action Anticipation: A Survey
- URL: http://arxiv.org/abs/2410.14045v1
- Date: Thu, 17 Oct 2024 21:37:40 GMT
- Title: Human Action Anticipation: A Survey
- Authors: Bolin Lai, Sam Toyer, Tushar Nagarajan, Rohit Girdhar, Shengxin Zha, James M. Rehg, Kris Kitani, Kristen Grauman, Ruta Desai, Miao Liu,
- Abstract summary: The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
- Score: 86.415721659234
- License:
- Abstract: Predicting future human behavior is an increasingly popular topic in computer vision, driven by the interest in applications such as autonomous vehicles, digital assistants and human-robot interactions. The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on. Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation. We also summarize the widely-used metrics for different tasks and provide a comprehensive performance comparison of existing approaches on eleven action anticipation datasets. This survey serves as not only a reference for contemporary methodologies in action anticipation, but also a guideline for future research direction of this evolving landscape.
Related papers
- Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Recent Advances in Deterministic Human Motion Prediction: A Review [2.965405736351051]
Human motion prediction technology has gradually gained prominence in various fields such as human-computer interaction, autonomous driving, sports analysis, and personnel tracking.
This article introduces common model architectures in this domain along with their respective advantages and disadvantages.
It also systematically summarizes recent research innovations, focusing on in-depth discussions of relevant papers in these areas.
arXiv Detail & Related papers (2023-12-11T07:54:42Z) - A Survey on Deep Learning Techniques for Action Anticipation [12.336150312807561]
We review the recent advances of action anticipation algorithms with a particular focus on daily-living scenarios.
We classify these methods according to their primary contributions and summarize them in tabular form.
We delve into the common evaluation metrics and datasets used for action anticipation and provide future directions with systematical discussions.
arXiv Detail & Related papers (2023-09-29T14:07:56Z) - A-ACT: Action Anticipation through Cycle Transformations [89.83027919085289]
We take a step back to analyze how the human capability to anticipate the future can be transferred to machine learning algorithms.
A recent study on human psychology explains that, in anticipating an occurrence, the human brain counts on both systems.
In this work, we study the impact of each system for the task of action anticipation and introduce a paradigm to integrate them in a learning framework.
arXiv Detail & Related papers (2022-04-02T21:50:45Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
Non-verbal social human behavior forecasting has increasingly attracted the interest of the research community in recent years.
Its direct applications to human-robot interaction and socially-aware human motion generation make it a very attractive field.
We define the behavior forecasting problem for multiple interactive agents in a generic way that aims at unifying the fields of social signals prediction and human motion forecasting.
arXiv Detail & Related papers (2022-03-04T18:25:30Z) - 3D Human Motion Prediction: A Survey [23.605334184939164]
3D human motion prediction, predicting future poses from a given sequence, is an issue of great significance and challenge in computer vision and machine intelligence.
A comprehensive survey on 3D human motion prediction is conducted for the purpose of retrospecting and analyzing relevant works from existing released literature.
arXiv Detail & Related papers (2022-03-03T09:46:43Z) - Predicting the Future from First Person (Egocentric) Vision: A Survey [18.07516837332113]
This survey summarises the evolution of studies in the context of future prediction from egocentric vision.
It makes an overview of applications, devices, existing problems, commonly used datasets, models and input modalities.
Our analysis highlights that methods for future prediction from egocentric vision can have a significant impact in a range of applications.
arXiv Detail & Related papers (2021-07-28T14:58:13Z) - Long-Term Anticipation of Activities with Cycle Consistency [90.79357258104417]
We propose a framework for anticipating future activities directly from the features of the observed frames and train it in an end-to-end fashion.
Our framework achieves state-the-art results on two datasets: the Breakfast dataset and 50Salads.
arXiv Detail & Related papers (2020-09-02T15:41:32Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.