Learning Multimodal Cues of Children's Uncertainty
- URL: http://arxiv.org/abs/2410.14050v1
- Date: Thu, 17 Oct 2024 21:46:00 GMT
- Title: Learning Multimodal Cues of Children's Uncertainty
- Authors: Qi Cheng, Mert İnan, Rahma Mbarki, Grace Grmek, Theresa Choi, Yiming Sun, Kimele Persaud, Jenny Wang, Malihe Alikhani,
- Abstract summary: We present a dataset annotated in collaboration with developmental and cognitive psychologists for the purpose of studying nonverbal cues of uncertainty.
We then present an analysis of the data, studying different roles of uncertainty and its relationship with task difficulty and performance.
Lastly, we present a multimodal machine learning model that can predict uncertainty given a real-time video clip of a participant.
- Score: 19.349368123567658
- License:
- Abstract: Understanding uncertainty plays a critical role in achieving common ground (Clark et al.,1983). This is especially important for multimodal AI systems that collaborate with users to solve a problem or guide the user through a challenging concept. In this work, for the first time, we present a dataset annotated in collaboration with developmental and cognitive psychologists for the purpose of studying nonverbal cues of uncertainty. We then present an analysis of the data, studying different roles of uncertainty and its relationship with task difficulty and performance. Lastly, we present a multimodal machine learning model that can predict uncertainty given a real-time video clip of a participant, which we find improves upon a baseline multimodal transformer model. This work informs research on cognitive coordination between human-human and human-AI and has broad implications for gesture understanding and generation. The anonymized version of our data and code will be publicly available upon the completion of the required consent forms and data sheets.
Related papers
- MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics [37.30869857541657]
We introduce a multimodal deception dataset MDPE.
Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics.
It comprises over 104 hours of deception and emotional videos from 193 subjects.
arXiv Detail & Related papers (2024-07-17T02:44:26Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Contrastive Learning with Cross-Modal Knowledge Mining for Multimodal
Human Activity Recognition [1.869225486385596]
We explore the hypothesis that leveraging multiple modalities can lead to better recognition.
We extend a number of recent contrastive self-supervised approaches for the task of Human Activity Recognition.
We propose a flexible, general-purpose framework for performing multimodal self-supervised learning.
arXiv Detail & Related papers (2022-05-20T10:39:16Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Towards Explainable Multi-Party Learning: A Contrastive Knowledge
Sharing Framework [23.475874929905192]
We propose a novel contrastive multi-party learning framework for knowledge refinement and sharing.
The proposed scheme achieves significant improvement in model performance in a variety of scenarios.
arXiv Detail & Related papers (2021-04-14T07:33:48Z) - User profile-driven large-scale multi-agent learning from demonstration
in federated human-robot collaborative environments [5.218882272051637]
This paper introduces a novel user profile formulation for providing a fine-grained representation of the exhibited human behavior.
The overall designed scheme enables both short- and long-term analysis/interpretation of the human behavior.
arXiv Detail & Related papers (2021-03-30T15:33:21Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.