Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set
- URL: http://arxiv.org/abs/2410.14189v1
- Date: Fri, 18 Oct 2024 05:48:06 GMT
- Title: Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set
- Authors: Wenyuan Zhang, Yu-Shen Liu, Zhizhong Han,
- Abstract summary: It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
- Score: 49.780302894956776
- License:
- Abstract: It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction. 3D Gaussian splatting (3DGS) provides a novel perspective for volume rendering, and shows advantages in rendering efficiency and quality. Although 3DGS provides a promising neural rendering option, it is still hard to infer SDFs for surface reconstruction with 3DGS due to the discreteness, the sparseness, and the off-surface drift of 3D Gaussians. To resolve these issues, we propose a method that seamlessly merge 3DGS with the learning of neural SDFs. Our key idea is to more effectively constrain the SDF inference with the multi-view consistency. To this end, we dynamically align 3D Gaussians on the zero-level set of the neural SDF using neural pulling, and then render the aligned 3D Gaussians through the differentiable rasterization. Meanwhile, we update the neural SDF by pulling neighboring space to the pulled 3D Gaussians, which progressively refine the signed distance field near the surface. With both differentiable pulling and splatting, we jointly optimize 3D Gaussians and the neural SDF with both RGB and geometry constraints, which recovers more accurate, smooth, and complete surfaces with more geometry details. Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
Related papers
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
We introduce G2SDF, a novel approach that integrates a neural implicit Signed Distance Field into the Gaussian Splatting framework.
G2SDF achieves superior quality than prior works while maintaining the efficiency of 3DGS.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting [4.255847344539736]
We introduce a novel approach that combines octree-based implicit surface representations with Gaussian splatting.
Our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting.
arXiv Detail & Related papers (2024-06-26T09:29:56Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
We present a unified framework integrating neural SDF with 3DGS.
This framework incorporates a learnable neural SDF field to guide the densification and pruning of Gaussians.
Our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-05-30T03:46:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR.
The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized.
Our experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS.
arXiv Detail & Related papers (2024-03-30T16:35:38Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
We propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces.
The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure.
We introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin.
arXiv Detail & Related papers (2023-12-01T07:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.