Generative AI, Pragmatics, and Authenticity in Second Language Learning
- URL: http://arxiv.org/abs/2410.14395v1
- Date: Fri, 18 Oct 2024 11:58:03 GMT
- Title: Generative AI, Pragmatics, and Authenticity in Second Language Learning
- Authors: Robert Godwin-Jones`,
- Abstract summary: There are obvious benefits to integrating generative AI (artificial intelligence) into language learning and teaching.
However, due to how AI systems under-stand human language, they lack the lived experience to be able to use language with the same social awareness as humans.
There are built-in linguistic and cultural biases based on their training data which is mostly in English and predominantly from Western sources.
- Score: 0.0
- License:
- Abstract: There are obvious benefits to integrating generative AI (artificial intelligence) into language learning and teaching. Those include using AI as a language tutor, creating learning materials, or assessing learner output. However, due to how AI systems under-stand human language, based on a mathematical model using statistical probability, they lack the lived experience to be able to use language with the same social aware-ness as humans. Additionally, there are built-in linguistic and cultural biases based on their training data which is mostly in English and predominantly from Western sources. Those facts limit AI suitability for some language learning interactions. Stud-ies have clearly shown that systems such as ChatGPT often do not produce language that is pragmatically appropriate. The lack of linguistic and cultural authenticity has important implications for how AI is integrated into second language acquisition as well as in instruction targeting development of intercultural communication compe-tence.
Related papers
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
Policy Learning with a Language Bottleneck (PLLBB) is a framework enabling AI agents to generate linguistic rules.
PLLBB alternates between a rule generation step guided by language models, and an update step where agents learn new policies guided by rules.
In a two-player communication game, a maze solving task, and two image reconstruction tasks, we show thatPLLBB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users.
arXiv Detail & Related papers (2024-05-07T08:40:21Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPT can provide informal second language practice through chats in written or voice forms.
Instructors can use AI to build learning and assessment materials in a variety of media.
arXiv Detail & Related papers (2024-03-29T14:55:40Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - Critical Appraisal of Artificial Intelligence-Mediated Communication [0.0]
This book explores the advantages and disadvantages of AI-mediated communication in language education.
It argues that it is crucial for language teachers to engage in CALL teacher education and professional development to keep up with the ever-evolving technology landscape and improve their teaching effectiveness.
arXiv Detail & Related papers (2023-05-15T02:35:40Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
Rapid progress in machine learning for natural language processing has the potential to transform debates about how humans learn language.
To increase the relevance of learnability results from computational models, we need to train model learners without significant advantages over humans.
arXiv Detail & Related papers (2022-08-17T00:12:37Z) - Human Heuristics for AI-Generated Language Are Flawed [8.465228064780744]
We study whether verbal self-presentations, one of the most personal and consequential forms of language, were generated by AI.
We experimentally demonstrate that these wordings make human judgment of AI-generated language predictable and manipulable.
We discuss solutions, such as AI accents, to reduce the deceptive potential of language generated by AI.
arXiv Detail & Related papers (2022-06-15T03:18:56Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
Large language models can encode a wealth of semantic knowledge about the world.
Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language.
We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions.
arXiv Detail & Related papers (2022-04-04T17:57:11Z) - Words of Wisdom: Representational Harms in Learning From AI
Communication [9.998078491879143]
We contend that all language, including all AI communication, encodes information about the identity of the human or humans who contributed to crafting the language.
With AI communication, however, the user may index identity information that does not match the source.
This can lead to representational harms if language associated with one cultural group is presented as "standard" or "neutral"
arXiv Detail & Related papers (2021-11-16T15:59:49Z) - Systematic Review for AI-based Language Learning Tools [0.0]
This review synthesized information on AI tools that were developed between 2017 and 2020.
A majority of these tools utilized machine learning and natural language processing.
After using these tools, learners demonstrated gains in their language abilities and knowledge.
arXiv Detail & Related papers (2021-10-29T11:54:51Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.