SPFresh: Incremental In-Place Update for Billion-Scale Vector Search
- URL: http://arxiv.org/abs/2410.14452v1
- Date: Fri, 18 Oct 2024 13:24:18 GMT
- Title: SPFresh: Incremental In-Place Update for Billion-Scale Vector Search
- Authors: Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li, Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, Mao Yang,
- Abstract summary: We introduce SPFresh, a system that supports in-place vector updates.
At the heart of SPFresh is LIRE, a lightweight incremental rebalancing protocol.
With LIRE, SPFresh provides superior query latency and accuracy to solutions based on global rebuild.
- Score: 19.245438083030006
- License:
- Abstract: Approximate Nearest Neighbor Search (ANNS) is now widely used in various applications, ranging from information retrieval, question answering, and recommendation, to search for similar high-dimensional vectors. As the amount of vector data grows continuously, it becomes important to support updates to vector index, the enabling technique that allows for efficient and accurate ANNS on vectors. Because of the curse of high dimensionality, it is often costly to identify the right neighbors of a single new vector, a necessary process for index update. To amortize update costs, existing systems maintain a secondary index to accumulate updates, which are merged by the main index by global rebuilding the entire index periodically. However, this approach has high fluctuations of search latency and accuracy, not even to mention that it requires substantial resources and is extremely time-consuming for rebuilds. We introduce SPFresh, a system that supports in-place vector updates. At the heart of SPFresh is LIRE, a lightweight incremental rebalancing protocol to split vector partitions and reassign vectors in the nearby partitions to adapt to data distribution shift. LIRE achieves low-overhead vector updates by only reassigning vectors at the boundary between partitions, where in a high-quality vector index the amount of such vectors are deemed small. With LIRE, SPFresh provides superior query latency and accuracy to solutions based on global rebuild, with only 1% of DRAM and less than 10% cores needed at the peak compared to the state-of-the-art, in a billion scale vector index with 1% of daily vector update rate.
Related papers
- GleanVec: Accelerating vector search with minimalist nonlinear dimensionality reduction [1.1599570446840546]
Cross-modal retrieval (e.g., where a text query is used to find images) is gaining momentum rapidly.
It is challenging to achieve high accuracy as the queries often have different statistical distributions than the database vectors.
We present new linear and nonlinear methods for dimensionality reduction to accelerate high-dimensional vector search.
arXiv Detail & Related papers (2024-10-14T21:14:27Z) - RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval [24.472784635757016]
RetrievalAttention is a training-free approach to both accelerate attention computation and reduce GPU memory consumption.
Our evaluation shows that RetrievalAttention only needs to access 1--3% of data while maintaining high model accuracy.
arXiv Detail & Related papers (2024-09-16T17:59:52Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) is a novel semi-parametric retrieval framework.
It supports two types of indexes: an embedding-based index for high effectiveness, akin to existing neural retrieval methods; and a binary token index that allows for quick and cost-effective setup, resembling traditional term-based retrieval.
It achieves a 3% higher top-1 retrieval accuracy compared to the dense retriever DPR when using an embedding-based index and a 9% higher top-1 accuracy compared to BM25 when using a binary token index.
arXiv Detail & Related papers (2024-05-03T08:34:13Z) - Locally-Adaptive Quantization for Streaming Vector Search [1.151101202055732]
Locally-Adaptive Vector Quantization (LVQ), a highly efficient vector compression method, yields state-of-the-art search performance for non-evolving databases.
We introduce two improvements of LVQ: Turbo LVQ and multi-means LVQ that boost its search performance by up to 28% and 27%.
Our studies show that LVQ and its new variants enable blazing fast vector search, outperforming its closest competitor by up to 9.4x for identically distributed data.
arXiv Detail & Related papers (2024-02-03T05:43:39Z) - The Faiss library [54.589857872477445]
Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors.
This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing.
arXiv Detail & Related papers (2024-01-16T11:12:36Z) - LeanVec: Searching vectors faster by making them fit [1.0863382547662974]
We present LeanVec, a framework that combines linear dimensionality reduction with vector quantization to accelerate similarity search on high-dimensional vectors.
We show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in search throughput and up to 4.9x faster index build time.
arXiv Detail & Related papers (2023-12-26T21:14:59Z) - Similarity search in the blink of an eye with compressed indices [3.39271933237479]
Graph-based indices are currently the best performing techniques for billion-scale similarity search.
We present new techniques and systems for creating faster and smaller graph-based indices.
arXiv Detail & Related papers (2023-04-07T23:10:39Z) - Improving Out-of-Distribution Generalization of Neural Rerankers with
Contextualized Late Interaction [52.63663547523033]
Late interaction, the simplest form of multi-vector, is also helpful to neural rerankers that only use the [] vector to compute the similarity score.
We show that the finding is consistent across different model sizes and first-stage retrievers of diverse natures.
arXiv Detail & Related papers (2023-02-13T18:42:17Z) - CITADEL: Conditional Token Interaction via Dynamic Lexical Routing for
Efficient and Effective Multi-Vector Retrieval [72.90850213615427]
Multi-vector retrieval methods combine the merits of sparse (e.g. BM25) and dense (e.g. DPR) retrievers.
These methods are orders of magnitude slower and need much more space to store their indices compared to their single-vector counterparts.
We propose conditional token interaction via dynamic lexical routing, namely CITADEL, for efficient and effective multi-vector retrieval.
arXiv Detail & Related papers (2022-11-18T18:27:35Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) matches pedestrians across disjoint cameras.
Existing ReID methods adopting real-value feature descriptors have achieved high accuracy, but they are low in efficiency due to the slow Euclidean distance computation.
We propose a novel Sub-space Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by 0.25$ times.
arXiv Detail & Related papers (2022-07-13T02:44:05Z) - IRLI: Iterative Re-partitioning for Learning to Index [104.72641345738425]
Methods have to trade between obtaining high accuracy while maintaining load balance and scalability in distributed settings.
We propose a novel approach called IRLI, which iteratively partitions the items by learning the relevant buckets directly from the query-item relevance data.
We mathematically show that IRLI retrieves the correct item with high probability under very natural assumptions and provides superior load balancing.
arXiv Detail & Related papers (2021-03-17T23:13:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.