Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning
- URL: http://arxiv.org/abs/2410.14464v1
- Date: Fri, 18 Oct 2024 13:48:01 GMT
- Title: Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning
- Authors: Jialu Tang, Tong Xia, Yuan Lu, Cecilia Mascolo, Aaqib Saeed,
- Abstract summary: Electrocardiogram (ECG) interpretation requires specialized expertise.
This work introduces a novel multimodal meta-learning method for few-shot ECG question answering.
- Score: 19.513904491604794
- License:
- Abstract: Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.
Related papers
- Teach Multimodal LLMs to Comprehend Electrocardiographic Images [10.577263066644194]
We introduce ECGInstruct, a comprehensive ECG image instruction tuning dataset of over one million samples.
We also develop PULSE, an MLLM tailored for ECG image comprehension.
Our experiments show that PULSE sets a new state-of-the-art, outperforming general MLLMs with an average accuracy improvement of 15% to 30%.
arXiv Detail & Related papers (2024-10-21T20:26:41Z) - Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling [19.513904491604794]
ECG-ReGen is a retrieval-based approach for ECG-to-text report generation and question answering.
By combining pre-training with dynamic retrieval and Large Language Model (LLM)-based refinement, ECG-ReGen effectively analyzes ECG data and answers related queries.
arXiv Detail & Related papers (2024-09-13T12:50:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
This study introduces a new multimodal contrastive pretaining framework that aims to improve the quality and robustness of learned representations of 12-lead ECG signals.
Our framework comprises two key components, including Cardio Query Assistant (CQA) and ECG Semantics Integrator(ESI)
arXiv Detail & Related papers (2024-05-26T06:45:39Z) - Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement [10.611952462532908]
Multimodal ECG Representation Learning (MERL) is capable of performing zero-shot ECG classification with text prompts.
We propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach to exploit external expert-verified clinical knowledge databases.
MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10% annotated training data, averaged across all six datasets.
arXiv Detail & Related papers (2024-03-11T12:28:55Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.