Large Language Models Are Overparameterized Text Encoders
- URL: http://arxiv.org/abs/2410.14578v1
- Date: Fri, 18 Oct 2024 16:26:45 GMT
- Title: Large Language Models Are Overparameterized Text Encoders
- Authors: Thennal D K, Tim Fischer, Chris Biemann,
- Abstract summary: Large language models (LLMs) demonstrate strong performance as text embedding models when finetuned with supervised contrastive training.
We show that by pruning the last $p%$ layers of an LLM before supervised training for only 1000 steps, we can achieve a proportional reduction in memory and inference time.
- Score: 17.608805125623803
- License:
- Abstract: Large language models (LLMs) demonstrate strong performance as text embedding models when finetuned with supervised contrastive training. However, their large size balloons inference time and memory requirements. In this paper, we show that by pruning the last $p\%$ layers of an LLM before supervised training for only 1000 steps, we can achieve a proportional reduction in memory and inference time. We evaluate four different state-of-the-art LLMs on text embedding tasks and find that our method can prune up to 30\% of layers with negligible impact on performance and up to 80\% with only a modest drop. With only three lines of code, our method is easily implemented in any pipeline for transforming LLMs to text encoders. We also propose $\text{L}^3 \text{Prune}$, a novel layer-pruning strategy based on the model's initial loss that provides two optimal pruning configurations: a large variant with negligible performance loss and a small variant for resource-constrained settings. On average, the large variant prunes 21\% of the parameters with a $-0.3$ performance drop, and the small variant only suffers from a $-5.1$ decrease while pruning 74\% of the model. We consider these results strong evidence that LLMs are overparameterized for text embedding tasks, and can be easily pruned.
Related papers
- Reassessing Layer Pruning in LLMs: New Insights and Methods [24.394438652261982]
We show that a simple approach, i.e., pruning the final 25% of layers followed by fine-tuning the textttlm_head and the remaining last three layer, yields remarkably strong performance.
We release the optimal model weights on Hface, and the code is available on GitHub.
arXiv Detail & Related papers (2024-11-23T13:31:16Z) - Reasoning Robustness of LLMs to Adversarial Typographical Errors [49.99118660264703]
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning using Chain-of-Thought (CoT) prompting.
We study the reasoning robustness of LLMs to typographical errors, which can naturally occur in users' queries.
We design an Adversarial Typo Attack ($texttATA$) algorithm that iteratively samples typos for words that are important to the query and selects the edit that is most likely to succeed in attacking.
arXiv Detail & Related papers (2024-11-08T05:54:05Z) - Pruning Foundation Models for High Accuracy without Retraining [48.256389781305415]
It is challenging to deploy foundation models or large language models (LLMs) due to their massive parameters and computations.
Post-training pruning methods are proposed to prune LLMs in one-shot without retraining.
Our experiments demonstrate the superior performance of the proposed methods in comparison to SOTA baselines.
arXiv Detail & Related papers (2024-10-21T01:23:34Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training [42.89066583603415]
This work identifies three critical $textitO$bstacles: lack of comprehensive evaluation, ($textitO$2) untested viability for scaling, and ($textitO$3) lack of empirical guidelines.
We show that a depthwise stacking operator, called $G_textstack$, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance.
arXiv Detail & Related papers (2024-05-24T08:00:00Z) - BESA: Pruning Large Language Models with Blockwise Parameter-Efficient Sparsity Allocation [54.28841287750586]
Large language models (LLMs) have demonstrated outstanding performance in various tasks, such as text summarization, text question-answering, and etc.
Existing solutions such as SparseGPT and Wanda attempt to alleviate this issue through weight pruning.
This paper introduces a novel LLM pruning technique dubbed blockwise parameter-efficient sparsity allocation (BESA) by applying a blockwise reconstruction loss.
arXiv Detail & Related papers (2024-02-18T12:44:15Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - AMOM: Adaptive Masking over Masking for Conditional Masked Language
Model [81.55294354206923]
A conditional masked language model (CMLM) is one of the most versatile frameworks.
We introduce a simple yet effective adaptive masking over masking strategy to enhance the refinement capability of the decoder.
Our proposed model yields state-of-the-art performance on neural machine translation.
arXiv Detail & Related papers (2023-03-13T20:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.