A Lipschitz spaces view of infinitely wide shallow neural networks
- URL: http://arxiv.org/abs/2410.14591v1
- Date: Fri, 18 Oct 2024 16:41:37 GMT
- Title: A Lipschitz spaces view of infinitely wide shallow neural networks
- Authors: Francesca Bartolucci, Marcello Carioni, José A. Iglesias, Yury Korolev, Emanuele Naldi, Stefano Vigogna,
- Abstract summary: We revisit the mean field parametrization of shallow neural networks, using signed measures on parameter spaces and duality pairings.
We prove a compactness result in strong Kantorovich-Rubinstein norm, and in the absence of which we show several examples demonstrating undesirable behavior.
- Score: 3.0017241250121387
- License:
- Abstract: We revisit the mean field parametrization of shallow neural networks, using signed measures on unbounded parameter spaces and duality pairings that take into account the regularity and growth of activation functions. This setting directly leads to the use of unbalanced Kantorovich-Rubinstein norms defined by duality with Lipschitz functions, and of spaces of measures dual to those of continuous functions with controlled growth. These allow to make transparent the need for total variation and moment bounds or penalization to obtain existence of minimizers of variational formulations, under which we prove a compactness result in strong Kantorovich-Rubinstein norm, and in the absence of which we show several examples demonstrating undesirable behavior. Further, the Kantorovich-Rubinstein setting enables us to combine the advantages of a completely linear parametrization and ensuing reproducing kernel Banach space framework with optimal transport insights. We showcase this synergy with representer theorems and uniform large data limits for empirical risk minimization, and in proposed formulations for distillation and fusion applications.
Related papers
- Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Batches Stabilize the Minimum Norm Risk in High Dimensional Overparameterized Linear Regression [12.443289202402761]
We show the benefits of batch- partitioning through the lens of a minimum-norm overparametrized linear regression model.
We characterize the optimal batch size and show it is inversely proportional to the noise level.
We also show that shrinking the batch minimum-norm estimator by a factor equal to the Weiner coefficient further stabilizes it and results in lower quadratic risk in all settings.
arXiv Detail & Related papers (2023-06-14T11:02:08Z) - On the Lipschitz Constant of Deep Networks and Double Descent [5.381801249240512]
Existing bounds on the generalization error of deep networks assume some form of smooth or bounded dependence on the input variable.
We present an extensive experimental study of the empirical Lipschitz constant of deep networks undergoing double descent.
arXiv Detail & Related papers (2023-01-28T23:22:49Z) - Beyond the Edge of Stability via Two-step Gradient Updates [49.03389279816152]
Gradient Descent (GD) is a powerful workhorse of modern machine learning.
GD's ability to find local minimisers is only guaranteed for losses with Lipschitz gradients.
This work focuses on simple, yet representative, learning problems via analysis of two-step gradient updates.
arXiv Detail & Related papers (2022-06-08T21:32:50Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Sparsest Univariate Learning Models Under Lipschitz Constraint [31.28451181040038]
We propose continuous-domain formulations for one-dimensional regression problems.
We control the Lipschitz constant explicitly using a user-defined upper-bound.
We show that both problems admit global minimizers that are continuous and piecewise-linear.
arXiv Detail & Related papers (2021-12-27T07:03:43Z) - Decentralized Feature-Distributed Optimization for Generalized Linear
Models [19.800898945436384]
We consider the "all-for-one" decentralized learning problem for generalized linear models.
The features of each sample are partitioned among several collaborating agents in a connected network, but only one agent observes the response variables.
We apply the Chambolle--Pock primal--dual algorithm to an equivalent saddle-point formulation of the problem.
arXiv Detail & Related papers (2021-10-28T16:42:47Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Lipschitz Bounded Equilibrium Networks [3.2872586139884623]
This paper introduces new parameterizations of equilibrium neural networks, i.e. networks defined by implicit equations.
The new parameterization admits a Lipschitz bound during training via unconstrained optimization.
In image classification experiments we show that the Lipschitz bounds are very accurate and improve robustness to adversarial attacks.
arXiv Detail & Related papers (2020-10-05T01:00:40Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.