Asymptotically Optimal Change Detection for Unnormalized Pre- and Post-Change Distributions
- URL: http://arxiv.org/abs/2410.14615v1
- Date: Fri, 18 Oct 2024 17:13:29 GMT
- Title: Asymptotically Optimal Change Detection for Unnormalized Pre- and Post-Change Distributions
- Authors: Arman Adibi, Sanjeev Kulkarni, H. Vincent Poor, Taposh Banerjee, Vahid Tarokh,
- Abstract summary: This paper addresses the problem of detecting changes when only unnormalized pre- and post-change distributions are accessible.
Our approach is based on the estimation of the Cumulative Sum statistics, which is known to produce optimal performance.
- Score: 65.38208224389027
- License:
- Abstract: This paper addresses the problem of detecting changes when only unnormalized pre- and post-change distributions are accessible. This situation happens in many scenarios in physics such as in ferromagnetism, crystallography, magneto-hydrodynamics, and thermodynamics, where the energy models are difficult to normalize. Our approach is based on the estimation of the Cumulative Sum (CUSUM) statistics, which is known to produce optimal performance. We first present an intuitively appealing approximation method. Unfortunately, this produces a biased estimator of the CUSUM statistics and may cause performance degradation. We then propose the Log-Partition Approximation Cumulative Sum (LPA-CUSUM) algorithm based on thermodynamic integration (TI) in order to estimate the log-ratio of normalizing constants of pre- and post-change distributions. It is proved that this approach gives an unbiased estimate of the log-partition function and the CUSUM statistics, and leads to an asymptotically optimal performance. Moreover, we derive a relationship between the required sample size for thermodynamic integration and the desired detection delay performance, offering guidelines for practical parameter selection. Numerical studies are provided demonstrating the efficacy of our approach.
Related papers
- Learning Generalized Statistical Mechanics with Matrix Product States [41.94295877935867]
We introduce a variational algorithm based on Matrix Product States that is trained by minimizing a generalized free energy defined using Tsallis entropy instead of the standard Gibbs entropy.
As a result, our model can generate the probability distributions associated with generalized statistical mechanics.
arXiv Detail & Related papers (2024-09-12T18:30:45Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Quickest Change Detection for Unnormalized Statistical Models [36.6516991850508]
This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection.
The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models.
arXiv Detail & Related papers (2023-02-01T05:27:34Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Stochastic Normalizing Flows [2.323220706791067]
We show that normalizing flows can be used to learn the transformation of a simple prior distribution.
We derive an efficient training procedure by which both the sampler's and the flow's parameters can be optimized end-to-end.
We illustrate the representational power, sampling efficiency and correctness of SNFs on several benchmarks including applications to molecular sampling systems in equilibrium.
arXiv Detail & Related papers (2020-02-16T23:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.