GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings
- URL: http://arxiv.org/abs/2410.14635v1
- Date: Fri, 18 Oct 2024 17:36:53 GMT
- Title: GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings
- Authors: Raghuveer Thirukovalluru, Bhuwan Dhingra,
- Abstract summary: Training-free embedding methods directly leverage pretrained large language models (LLMs) to embed text.
We propose a novel method, which uses LLMs to generate diverse transformations of a sentence that preserve its meaning.
- Score: 7.957874169275548
- License:
- Abstract: Training-free embedding methods directly leverage pretrained large language models (LLMs) to embed text, bypassing the costly and complex procedure of contrastive learning. Previous training-free embedding methods have mainly focused on optimizing embedding prompts and have overlooked the benefits of utilizing the generative abilities of LLMs. We propose a novel method, GenEOL, which uses LLMs to generate diverse transformations of a sentence that preserve its meaning, and aggregates the resulting embeddings of these transformations to enhance the overall sentence embedding. GenEOL significantly outperforms the existing training-free embedding methods by an average of 2.85 points across several LLMs on the sentence semantic text similarity (STS) benchmark. Our analysis shows that GenEOL stabilizes representation quality across LLM layers and is robust to perturbations of embedding prompts. GenEOL also achieves notable gains on multiple clustering, reranking and pair-classification tasks from the MTEB benchmark.
Related papers
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Bridging the Gap between Different Vocabularies for LLM Ensemble [10.669552498083709]
vocabulary discrepancies among various large language models (LLMs) have constrained previous studies.
We propose a novel method to Ensemble LLMs via Vocabulary Alignment (EVA)
EVA bridges the lexical gap among various LLMs, enabling meticulous ensemble at each generation step.
arXiv Detail & Related papers (2024-04-15T06:28:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Instruction Fusion: Advancing Prompt Evolution through Hybridization [27.321629102942754]
This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF)
IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs.
Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs.
arXiv Detail & Related papers (2023-12-25T11:00:37Z) - Prompt Optimization via Adversarial In-Context Learning [51.18075178593142]
adv-ICL is implemented as a two-player game between a generator and a discriminator.
The generator tries to generate realistic enough output to fool the discriminator.
We show that adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques.
arXiv Detail & Related papers (2023-12-05T09:44:45Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
We introduce a novel method, namely GenCo, which leverages the strong generative power of large language models to assist in training a smaller language model.
In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways.
It helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels.
arXiv Detail & Related papers (2023-04-24T07:35:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.