Two-dimensional many-body localized systems coupled to a heat bath
- URL: http://arxiv.org/abs/2410.14652v1
- Date: Fri, 18 Oct 2024 17:47:13 GMT
- Title: Two-dimensional many-body localized systems coupled to a heat bath
- Authors: Joey Li, Amos Chan, Thorsten B. Wahl,
- Abstract summary: We numerically investigate the effect of coupling a two-dimensional many-body localized system to a finite heat bath.
Specifically, we simulate optical lattice experiments with two components of ultracold bosons.
We observe a distribution of the quantum mutual information in the many-body localized regime which is consistent with the presence of resonances.
- Score: 0.0
- License:
- Abstract: We numerically investigate the effect of coupling a two-dimensional many-body localized system to a finite heat bath, using shallow quantum circuits as a variational ansatz. Specifically, we simulate optical lattice experiments with two components of ultracold bosons, where only one species is subject to a random disorder potential and the other acts as a heat bath. We obtain a filling fraction dependent phase diagram with a critical filling consistent with experiments. We also calculate two-point correlation functions and the quantum mutual information between sites. We observe a distribution of the quantum mutual information in the many-body localized regime which is consistent with the presence of resonances, similar to those observed in one-dimensional many-body localized systems.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - A novel scheme for modelling dissipation or thermalization in open quantum systems [0.0]
We introduce a novel method for investigating dissipation or thermalization in an open quantum system.
We apply it to examine several important and ubiquitous open quantum systems.
arXiv Detail & Related papers (2024-04-16T05:20:30Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Microwave control of collective quantum jump statistics of a dissipative
Rydberg gas [24.677576227304854]
Quantum many-body systems near phase transitions respond collectively to externally applied perturbations.
We explore this phenomenon in a laser-driven dissipative Rydberg gas tuned to a bistable regime.
Our study demonstrates the control of collective statistical properties of dissipative quantum many-body systems without the necessity of fine-tuning or of ultra cold temperatures.
arXiv Detail & Related papers (2024-02-07T13:06:11Z) - Non-classicality of squeezed non-Markovian processes [0.0]
We study nonclassical effects in the dynamics of an open quantum system.
The squeezed reservoirs coupled to the system through single and two quanta exchange processes are put in the spotlight.
arXiv Detail & Related papers (2023-05-16T09:56:53Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Partial thermalisation of a two-state system coupled to a finite quantum
bath [0.0]
The eigenstate thermalisation hypothesis (ETH) is a statistical characterisation of eigen-energies, eigenstates and matrix elements of local operators in thermalising quantum systems.
We develop an ETH-like ansatz of a partially thermalising system composed of a spin-1/2 coupled to a finite quantum bath.
arXiv Detail & Related papers (2021-04-07T17:59:57Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Local master equations may fail to describe dissipative critical
behavior [0.0]
Local quantum master equations provide a simple description of interacting subsystems coupled to different reservoirs.
We evaluate the steady-state mean occupation number for varying temperature differences and find that local master equations generally fail to reproduce the results of an exact quantum-Langevin-equation description.
arXiv Detail & Related papers (2020-12-17T20:01:24Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.