FACMIC: Federated Adaptative CLIP Model for Medical Image Classification
- URL: http://arxiv.org/abs/2410.14707v1
- Date: Tue, 08 Oct 2024 13:24:10 GMT
- Title: FACMIC: Federated Adaptative CLIP Model for Medical Image Classification
- Authors: Yihang Wu, Christian Desrosiers, Ahmad Chaddad,
- Abstract summary: We introduce a federated adaptive Contrastive Language Image Pretraining CLIP model for classification tasks.
We employ a light-weight and efficient feature attention module for CLIP that selects suitable features for each client's data.
We propose a domain adaptation technique to reduce differences in data distribution between clients.
- Score: 12.166024140377337
- License:
- Abstract: Federated learning (FL) has emerged as a promising approach to medical image analysis that allows deep model training using decentralized data while ensuring data privacy. However, in the field of FL, communication cost plays a critical role in evaluating the performance of the model. Thus, transferring vision foundation models can be particularly challenging due to the significant resource costs involved. In this paper, we introduce a federated adaptive Contrastive Language Image Pretraining CLIP model designed for classification tasks. We employ a light-weight and efficient feature attention module for CLIP that selects suitable features for each client's data. Additionally, we propose a domain adaptation technique to reduce differences in data distribution between clients. Experimental results on four publicly available datasets demonstrate the superior performance of FACMIC in dealing with real-world and multisource medical imaging data. Our codes are available at https://github.com/AIPMLab/FACMIC.
Related papers
- Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.
Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - Multi-Modal One-Shot Federated Ensemble Learning for Medical Data with Vision Large Language Model [27.299068494473016]
We introduce FedMME, an innovative one-shot multi-modal federated ensemble learning framework.
FedMME capitalizes on vision large language models to produce textual reports from medical images.
It surpasses existing one-shot federated learning approaches by more than 17.5% in accuracy on the RSNA dataset.
arXiv Detail & Related papers (2025-01-06T08:36:28Z) - FedCAR: Cross-client Adaptive Re-weighting for Generative Models in Federated Learning [3.7088276910640365]
Federated learning is a privacy-preserving solution for training distributed datasets across data centers.
We propose a novel algorithm aimed at improving the performance of generative models within FL.
Experimental results on three public chest X-ray datasets show superior performance in medical image generation.
arXiv Detail & Related papers (2024-12-16T05:43:14Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Federated Alternate Training (FAT): Leveraging Unannotated Data Silos in
Federated Segmentation for Medical Imaging [15.74030550807913]
Federated Learning (FL) aims to train a machine learning (ML) model in a distributed fashion to strengthen data privacy with limited data migration costs.
Most current FL-based medical imaging works assume silos have ground truth labels for training.
We propose an alternate training-based framework, Federated Alternate Training (FAT), that alters training between annotated data silos and unannotated data silos.
arXiv Detail & Related papers (2023-04-18T22:21:40Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model.
In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models.
Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy.
arXiv Detail & Related papers (2022-07-07T17:25:04Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.