A Systematic Survey on Large Language Models for Algorithm Design
- URL: http://arxiv.org/abs/2410.14716v3
- Date: Fri, 01 Nov 2024 09:38:59 GMT
- Title: A Systematic Survey on Large Language Models for Algorithm Design
- Authors: Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Zhe Zhao, Xi Lin, Xialiang Tong, Mingxuan Yuan, Zhichao Lu, Zhenkun Wang, Qingfu Zhang,
- Abstract summary: Algorithm Design (AD) is crucial for effective problem-solving across various domains.
The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field.
- Score: 25.556342145274613
- License:
- Abstract: Algorithm Design (AD) is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and promising solutions. Over the past three years, the integration of LLMs into AD (LLM4AD) has seen substantial progress, with applications spanning optimization, machine learning, mathematical reasoning, and scientific discovery. Given the rapid advancements and expanding scope of this field, a systematic review is both timely and necessary. This paper provides a systematic review of LLM4AD. First, we offer an overview and summary of existing studies. Then, we introduce a taxonomy and review the literature across four dimensions: the roles of LLMs, search methods, prompt methods, and application domains with a discussion of potential and achievements of LLMs in AD. Finally, we identify current challenges and highlight several promising directions for future research.
Related papers
- Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
Multimodal Large Language Models (MLLMs) have become a transformative force in the field of artificial intelligence.
This survey aims to provide a systematic review of benchmark tests and evaluation methods for MLLMs.
arXiv Detail & Related papers (2024-09-17T14:35:38Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - A Survey on Large Language Models for Software Engineering [15.468484685849983]
Large Language Models (LLMs) are used to automate a broad range of Software Engineering (SE) tasks.
This paper summarizes the current state-of-the-art research in the LLM-based SE community.
arXiv Detail & Related papers (2023-12-23T11:09:40Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Large Language Models for Software Engineering: A Systematic Literature Review [34.12458948051519]
Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE)
We select and analyze 395 research papers from January 2017 to January 2024 to answer four key research questions (RQs)
From the answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research, and flagging promising areas for future study.
arXiv Detail & Related papers (2023-08-21T10:37:49Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.