High-Dimensional Tensor Discriminant Analysis with Incomplete Tensors
- URL: http://arxiv.org/abs/2410.14783v2
- Date: Wed, 30 Oct 2024 20:59:46 GMT
- Title: High-Dimensional Tensor Discriminant Analysis with Incomplete Tensors
- Authors: Elynn Chen, Yuefeng Han, Jiayu Li,
- Abstract summary: We introduce a novel approach to tensor classification with incomplete data, framed within high-dimensional linear discriminant analysis.
Our method demonstrates excellent performance in simulations and real data analysis, even with significant proportions of missing data.
- Score: 5.745276598549783
- License:
- Abstract: Tensor classification is gaining importance across fields, yet handling partially observed data remains challenging. In this paper, we introduce a novel approach to tensor classification with incomplete data, framed within high-dimensional tensor linear discriminant analysis. Specifically, we consider a high-dimensional tensor predictor with missing observations under the Missing Completely at Random (MCR) assumption and employ the Tensor Gaussian Mixture Model (TGMM) to capture the relationship between the tensor predictor and class label. We propose a Tensor Linear Discriminant Analysis with Missing Data (Tensor LDA-MD) algorithm, which manages high-dimensional tensor predictors with missing entries by leveraging the decomposable low-rank structure of the discriminant tensor. Our work establishes convergence rates for the estimation error of the discriminant tensor with incomplete data and minimax optimal bounds for the misclassification rate, addressing key gaps in the literature. Additionally, we derive large deviation bounds for the generalized mode-wise sample covariance matrix and its inverse, which are crucial tools in our analysis and hold independent interest. Our method demonstrates excellent performance in simulations and real data analysis, even with significant proportions of missing data.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Provable Tensor Completion with Graph Information [49.08648842312456]
We introduce a novel model, theory, and algorithm for solving the dynamic graph regularized tensor completion problem.
We develop a comprehensive model simultaneously capturing the low-rank and similarity structure of the tensor.
In terms of theory, we showcase the alignment between the proposed graph smoothness regularization and a weighted tensor nuclear norm.
arXiv Detail & Related papers (2023-10-04T02:55:10Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
We provide accuracy guarantees in terms of the entire tensor for both exact and noisy measurements.
Results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors.
arXiv Detail & Related papers (2022-07-09T19:33:59Z) - High-Order Multilinear Discriminant Analysis via Order-$\textit{n}$
Tensor Eigendecomposition [0.0]
This paper presents a new approach to tensor-based multilinear discriminant analysis referred to as High-Order Multilinear Discriminant Analysis (HOMLDA)
Our proposed approach provides improved classification performance with respect to the current Tucker decomposition-based supervised learning methods.
arXiv Detail & Related papers (2022-05-18T19:49:54Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - HyperNTF: A Hypergraph Regularized Nonnegative Tensor Factorization for
Dimensionality Reduction [2.1485350418225244]
We propose a novel method, called Hypergraph Regularized Nonnegative Factorization (HyperNTF)
HyperNTF can preserve nonnegativity in tensor factorization, and uncover the higher-order relationship among the nearest neighborhoods.
Experiments show that HyperNTF robustly outperforms state-of-the-art algorithms in clustering analysis.
arXiv Detail & Related papers (2021-01-18T01:38:47Z) - Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion [3.498620439731324]
We introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion.
Our model possesses a sparse regularization term to promote a sparse core tensor, which is beneficial for tensor data compression.
It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors.
arXiv Detail & Related papers (2020-10-01T12:45:39Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - An Optimal Statistical and Computational Framework for Generalized
Tensor Estimation [10.899518267165666]
This paper describes a flexible framework for low-rank tensor estimation problems.
It includes many important instances from applications in computational imaging, genomics, and network analysis.
arXiv Detail & Related papers (2020-02-26T01:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.