Predictive variational inference: Learn the predictively optimal posterior distribution
- URL: http://arxiv.org/abs/2410.14843v1
- Date: Fri, 18 Oct 2024 19:44:57 GMT
- Title: Predictive variational inference: Learn the predictively optimal posterior distribution
- Authors: Jinlin Lai, Yuling Yao,
- Abstract summary: Vanilla variational inference finds an optimal approximation to the Bayesian posterior distribution, but even the exact Bayesian posterior is often not meaningful under model misspecification.
We propose predictive variational inference (PVI): a general inference framework that seeks and samples from an optimal posterior density.
This framework applies to both likelihood-exact and likelihood-free models.
- Score: 1.7648680700685022
- License:
- Abstract: Vanilla variational inference finds an optimal approximation to the Bayesian posterior distribution, but even the exact Bayesian posterior is often not meaningful under model misspecification. We propose predictive variational inference (PVI): a general inference framework that seeks and samples from an optimal posterior density such that the resulting posterior predictive distribution is as close to the true data generating process as possible, while this this closeness is measured by multiple scoring rules. By optimizing the objective, the predictive variational inference is generally not the same as, or even attempting to approximate, the Bayesian posterior, even asymptotically. Rather, we interpret it as implicit hierarchical expansion. Further, the learned posterior uncertainty detects heterogeneity of parameters among the population, enabling automatic model diagnosis. This framework applies to both likelihood-exact and likelihood-free models. We demonstrate its application in real data examples.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Generalized Laplace Approximation [23.185126261153236]
We introduce a unified theoretical framework to attribute Bayesian inconsistency to model misspecification and inadequate priors.
We propose the generalized Laplace approximation, which involves a simple adjustment to the Hessian matrix of the regularized loss function.
We assess the performance and properties of the generalized Laplace approximation on state-of-the-art neural networks and real-world datasets.
arXiv Detail & Related papers (2024-05-22T11:11:42Z) - Variational Prediction [95.00085314353436]
We present a technique for learning a variational approximation to the posterior predictive distribution using a variational bound.
This approach can provide good predictive distributions without test time marginalization costs.
arXiv Detail & Related papers (2023-07-14T18:19:31Z) - Function-Space Regularization for Deep Bayesian Classification [33.63495888167032]
We apply a Dirichlet prior in predictive space and perform approximate function-space variational inference.
By adapting the inference, the same function-space prior can be combined with different models without affecting model architecture or size.
arXiv Detail & Related papers (2023-07-12T10:17:54Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - On the detrimental effect of invariances in the likelihood for
variational inference [21.912271882110986]
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability.
Prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes.
arXiv Detail & Related papers (2022-09-15T09:13:30Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
Particle variational inference (PVI) uses an ensemble of models as an empirical approximation for the posterior distribution.
PVI iteratively updates each model with a repulsion force to ensure the diversity of the optimized models.
We derive a novel generalization error bound and show that it can be reduced by enhancing the diversity of models.
arXiv Detail & Related papers (2021-06-09T12:13:51Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.