Making Every Frame Matter: Continuous Video Understanding for Large Models via Adaptive State Modeling
- URL: http://arxiv.org/abs/2410.14993v1
- Date: Sat, 19 Oct 2024 05:50:00 GMT
- Title: Making Every Frame Matter: Continuous Video Understanding for Large Models via Adaptive State Modeling
- Authors: Hao Wu, Donglin Bai, Shiqi Jiang, Qianxi Zhang, Yifan Yang, Ting Cao, Fengyuan Xu,
- Abstract summary: Video understanding has become increasingly important with the rise of multi-modality applications.
We introduce a novel system, C-VUE, to overcome these issues through adaptive state modeling.
C-VUE has three key designs. The first is a long-range history modeling technique that uses a video-aware approach to retain historical video information.
The second is a spatial redundancy reduction technique, which enhances the efficiency of history modeling based on temporal relations.
- Score: 14.450847211200292
- License:
- Abstract: Video understanding has become increasingly important with the rise of multi-modality applications. Understanding continuous video poses considerable challenges due to the fast expansion of streaming video, which contains multi-scale and untrimmed events. We introduce a novel system, C-VUE, to overcome these issues through adaptive state modeling. C-VUE has three key designs. The first is a long-range history modeling technique that uses a video-aware approach to retain historical video information. The second is a spatial redundancy reduction technique, which enhances the efficiency of history modeling based on temporal relations. The third is a parallel training structure that incorporates the frame-weighted loss to understand multi-scale events in long videos. Our C-VUE offers high accuracy and efficiency. It runs at speeds >30 FPS on typical edge devices and outperforms all baselines in accuracy. Moreover, applying C-VUE to a video foundation model as a video encoder in our case study resulted in a 0.46-point enhancement (on a 5-point scale) on the in-distribution dataset, and an improvement ranging from 1.19\% to 4\% on zero-shot datasets.
Related papers
- Depth Any Video with Scalable Synthetic Data [98.42356740981839]
We develop a scalable synthetic data pipeline, capturing real-time video depth data from diverse synthetic environments.
We leverage the powerful priors of generative video diffusion models to handle real-world videos effectively.
Our model outperforms all previous generative depth models in terms of spatial accuracy and temporal consistency.
arXiv Detail & Related papers (2024-10-14T17:59:46Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.
First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.
Second, we present MotionAura, a text-to-video generation framework.
Third, we propose a spectral transformer-based denoising network.
Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction [88.70116693750452]
Text-guided video prediction (TVP) involves predicting the motion of future frames from the initial frame according to an instruction.
Previous TVP methods make significant breakthroughs by adapting Stable Diffusion for this task.
We introduce the Multi-Modal Large Language Model (MLLM) to predict future video states based on initial frames and text instructions.
arXiv Detail & Related papers (2024-06-10T17:02:08Z) - TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking [33.75267864844047]
Video Object (VOS) has emerged as an increasingly important problem with availability of larger datasets and more complex and realistic settings.
We propose a novel, clip-based DETR-style encoder-decoder architecture, which focuses on systematically analyzing and addressing aforementioned challenges.
Specifically, we propose a novel transformation-aware loss that focuses learning on portions of the video where an object undergoes significant deformations.
arXiv Detail & Related papers (2023-12-13T21:02:03Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - Video-FocalNets: Spatio-Temporal Focal Modulation for Video Action
Recognition [112.66832145320434]
Video-FocalNet is an effective and efficient architecture for video recognition that models both local global contexts.
Video-FocalNet is based on a-temporal focal modulation architecture that reverses the interaction and aggregation steps of self-attention.
We show that Video-FocalNets perform favorably well against state-of-the-art transformer-based models for video recognition on five large-scale datasets.
arXiv Detail & Related papers (2023-07-13T17:59:33Z) - Video Mobile-Former: Video Recognition with Efficient Global
Spatial-temporal Modeling [125.95527079960725]
Transformer-based models have achieved top performance on major video recognition benchmarks.
Video Mobile-Former is the first Transformer-based video model which constrains the computational budget within 1G FLOPs.
arXiv Detail & Related papers (2022-08-25T17:59:00Z) - Learning Trajectory-Aware Transformer for Video Super-Resolution [50.49396123016185]
Video super-resolution aims to restore a sequence of high-resolution (HR) frames from their low-resolution (LR) counterparts.
Existing approaches usually align and aggregate video frames from limited adjacent frames.
We propose a novel Transformer for Video Super-Resolution (TTVSR)
arXiv Detail & Related papers (2022-04-08T03:37:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.