MambaSOD: Dual Mamba-Driven Cross-Modal Fusion Network for RGB-D Salient Object Detection
- URL: http://arxiv.org/abs/2410.15015v1
- Date: Sat, 19 Oct 2024 07:08:40 GMT
- Title: MambaSOD: Dual Mamba-Driven Cross-Modal Fusion Network for RGB-D Salient Object Detection
- Authors: Yue Zhan, Zhihong Zeng, Haijun Liu, Xiaoheng Tan, Yinli Tian,
- Abstract summary: The purpose of RGB-D Salient Object Detection (SOD) is to pinpoint the most visually conspicuous areas within images accurately.
We propose a dual Mamba-driven cross-modal fusion network for RGB-D SOD, named MambaSOD.
- Score: 10.848413136031025
- License:
- Abstract: The purpose of RGB-D Salient Object Detection (SOD) is to pinpoint the most visually conspicuous areas within images accurately. While conventional deep models heavily rely on CNN extractors and overlook the long-range contextual dependencies, subsequent transformer-based models have addressed the issue to some extent but introduce high computational complexity. Moreover, incorporating spatial information from depth maps has been proven effective for this task. A primary challenge of this issue is how to fuse the complementary information from RGB and depth effectively. In this paper, we propose a dual Mamba-driven cross-modal fusion network for RGB-D SOD, named MambaSOD. Specifically, we first employ a dual Mamba-driven feature extractor for both RGB and depth to model the long-range dependencies in multiple modality inputs with linear complexity. Then, we design a cross-modal fusion Mamba for the captured multi-modal features to fully utilize the complementary information between the RGB and depth features. To the best of our knowledge, this work is the first attempt to explore the potential of the Mamba in the RGB-D SOD task, offering a novel perspective. Numerous experiments conducted on six prevailing datasets demonstrate our method's superiority over sixteen state-of-the-art RGB-D SOD models. The source code will be released at https://github.com/YueZhan721/MambaSOD.
Related papers
- HODINet: High-Order Discrepant Interaction Network for RGB-D Salient
Object Detection [4.007827908611563]
RGB-D salient object detection (SOD) aims to detect the prominent regions by jointly modeling RGB and depth information.
Most RGB-D SOD methods apply the same type of backbones and fusion modules to identically learn the multimodality and multistage features.
In this paper, we propose a high-order discrepant interaction network (HODINet) for RGB-D SOD.
arXiv Detail & Related papers (2023-07-03T11:56:21Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - MTFNet: Mutual-Transformer Fusion Network for RGB-D Salient Object
Detection [15.371153771528093]
We propose a novel Mutual-Transformer Fusion Network (MTFNet) for RGB-D SOD.
MTFNet contains two main modules, $i.e.$, Focal Feature Extractor (FFE) and Mutual-Transformer Fusion (MTF)
Comprehensive experimental results on six public benchmarks demonstrate the superiority of our proposed MTFNet.
arXiv Detail & Related papers (2021-12-02T12:48:37Z) - Modality-Guided Subnetwork for Salient Object Detection [5.491692465987937]
Most RGBD networks require multi-modalities from the input side and feed them separately through a two-stream design.
We present in this paper a novel fusion design named modality-guided subnetwork (MGSnet)
It has the following superior designs: 1) Our model works for both RGB and RGBD data, and dynamically estimating depth if not available.
arXiv Detail & Related papers (2021-10-10T20:59:11Z) - RGB-D Saliency Detection via Cascaded Mutual Information Minimization [122.8879596830581]
Existing RGB-D saliency detection models do not explicitly encourage RGB and depth to achieve effective multi-modal learning.
We introduce a novel multi-stage cascaded learning framework via mutual information minimization to "explicitly" model the multi-modal information between RGB image and depth data.
arXiv Detail & Related papers (2021-09-15T12:31:27Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - BridgeNet: A Joint Learning Network of Depth Map Super-Resolution and
Monocular Depth Estimation [60.34562823470874]
We propose a joint learning network of depth map super-resolution (DSR) and monocular depth estimation (MDE) without introducing additional supervision labels.
One is the high-frequency attention bridge (HABdg) designed for the feature encoding process, which learns the high-frequency information of the MDE task to guide the DSR task.
The other is the content guidance bridge (CGBdg) designed for the depth map reconstruction process, which provides the content guidance learned from DSR task for MDE task.
arXiv Detail & Related papers (2021-07-27T01:28:23Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.