Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting
- URL: http://arxiv.org/abs/2410.15047v1
- Date: Sat, 19 Oct 2024 09:08:52 GMT
- Title: Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting
- Authors: Tugrul Cabir Hakyemez, Omer Adar,
- Abstract summary: We use the Panama Electricity dataset to evaluate HPO algorithms' performances on a surrogate forecasting algorithm, XGBoost, in terms of accuracy (i.e., MAPE, $R2$) and runtime.
Results reveal significant runtime advantages for HPO algorithms over Random Search.
- Score: 0.0
- License:
- Abstract: Accurate forecasting of electrical demand is essential for maintaining a stable and reliable power grid, optimizing the allocation of energy resources, and promoting efficient energy consumption practices. This study investigates the effectiveness of five hyperparameter optimization (HPO) algorithms -- Random Search, Covariance Matrix Adaptation Evolution Strategy (CMA--ES), Bayesian Optimization, Partial Swarm Optimization (PSO), and Nevergrad Optimizer (NGOpt) across univariate and multivariate Short-Term Load Forecasting (STLF) tasks. Using the Panama Electricity dataset (n=48,049), we evaluate HPO algorithms' performances on a surrogate forecasting algorithm, XGBoost, in terms of accuracy (i.e., MAPE, $R^2$) and runtime. Performance plots visualize these metrics across varying sample sizes from 1,000 to 20,000, and Kruskal--Wallis tests assess the statistical significance of the performance differences. Results reveal significant runtime advantages for HPO algorithms over Random Search. In univariate models, Bayesian optimization exhibited the lowest accuracy among the tested methods. This study provides valuable insights for optimizing XGBoost in the STLF context and identifies areas for future research.
Related papers
- Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
We introduce a new framework based on the empirical probability density function of the loss's magnitude, termed the "gradient magnitude histogram"
We propose a novel algorithm using gradient magnitude histograms to automatically estimate a refined and accurate search space for the optimal safeguard.
arXiv Detail & Related papers (2023-11-20T04:34:19Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
Particle swarm optimization (PSO) is an iterative search method that moves a set of candidate solution around a search-space towards the best known global and local solutions with randomized step lengths.
We show that our algorithm attains desirable properties for exploratory and exploitative behavior.
arXiv Detail & Related papers (2021-02-08T13:02:57Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.