Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning
- URL: http://arxiv.org/abs/2410.15148v1
- Date: Sat, 19 Oct 2024 16:22:04 GMT
- Title: Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning
- Authors: David Schulte, Felix Hamborg, Alan Akbik,
- Abstract summary: Intermediate task transfer learning can greatly improve model performance.
We conduct the largest study on NLP task transferability and task selection with 12k source-target pairs.
Applying ESMs on a prior method reduces execution time and disk space usage by factors of 10 and 278, respectively.
- Score: 5.119396962985841
- License:
- Abstract: Intermediate task transfer learning can greatly improve model performance. If, for example, one has little training data for emotion detection, first fine-tuning a language model on a sentiment classification dataset may improve performance strongly. But which task to choose for transfer learning? Prior methods producing useful task rankings are infeasible for large source pools, as they require forward passes through all source language models. We overcome this by introducing Embedding Space Maps (ESMs), light-weight neural networks that approximate the effect of fine-tuning a language model. We conduct the largest study on NLP task transferability and task selection with 12k source-target pairs. We find that applying ESMs on a prior method reduces execution time and disk space usage by factors of 10 and 278, respectively, while retaining high selection performance (avg. regret@5 score of 2.95).
Related papers
- Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs [18.242110417706]
This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model.
We show the optimality of this approach for fine-tuning tasks under certain conditions.
Our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour.
arXiv Detail & Related papers (2024-05-05T00:08:00Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Learning Invariant Representations across Domains and Tasks [81.30046935430791]
We propose a novel Task Adaptation Network (TAN) to solve this unsupervised task transfer problem.
In addition to learning transferable features via domain-adversarial training, we propose a novel task semantic adaptor that uses the learning-to-learn strategy to adapt the task semantics.
TAN significantly increases the recall and F1 score by 5.0% and 7.8% compared to recently strong baselines.
arXiv Detail & Related papers (2021-03-03T11:18:43Z) - ProtoDA: Efficient Transfer Learning for Few-Shot Intent Classification [21.933876113300897]
We adopt an alternative approach by transfer learning on an ensemble of related tasks using prototypical networks under the meta-learning paradigm.
Using intent classification as a case study, we demonstrate that increasing variability in training tasks can significantly improve classification performance.
arXiv Detail & Related papers (2021-01-28T00:19:13Z) - WARP: Word-level Adversarial ReProgramming [13.08689221166729]
In many applications it is preferable to tune much smaller sets of parameters, so that the majority of parameters can be shared across multiple tasks.
We present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation.
We show that this approach outperforms other methods with a similar number of trainable parameters on SST-2 and MNLI datasets.
arXiv Detail & Related papers (2021-01-01T00:41:03Z) - Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning
in NLP Using Fewer Parameters & Less Data [5.689320790746046]
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks.
However, MTL must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer.
We propose a novel Transformer architecture consisting of a new conditional attention mechanism and a set of task-conditioned modules.
arXiv Detail & Related papers (2020-09-19T02:04:34Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
We study the transferability between 33 NLP tasks across three broad classes of problems.
Our results show that transfer learning is more beneficial than previously thought.
We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task.
arXiv Detail & Related papers (2020-05-02T09:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.