Enhancing Robot Navigation Policies with Task-Specific Uncertainty Management
- URL: http://arxiv.org/abs/2410.15178v1
- Date: Sat, 19 Oct 2024 18:46:17 GMT
- Title: Enhancing Robot Navigation Policies with Task-Specific Uncertainty Management
- Authors: Gokul Puthumanaillam, Paulo Padrao, Jose Fuentes, Leonardo Bobadilla, Melkior Ornik,
- Abstract summary: We present a framework for integrating task-specific uncertainty requirements directly into navigation policies.
We find that conditioning policies on TSUMs provides an effective way to express task-specific uncertainty requirements.
We show how integrating GUIDE into reinforcement learning frameworks allows the agent to learn navigation policies without the need for explicit reward engineering.
- Score: 1.614803913005309
- License:
- Abstract: Robots performing navigation tasks in complex environments face significant challenges due to uncertainty in state estimation. Effectively managing this uncertainty is crucial, but the optimal approach varies depending on the specific details of the task: different tasks require varying levels of precision in different regions of the environment. For instance, a robot navigating a crowded space might need precise localization near obstacles but can operate effectively with less precise state estimates in open areas. This varying need for certainty in different parts of the environment, depending on the task, calls for policies that can adapt their uncertainty management strategies based on task-specific requirements. In this paper, we present a framework for integrating task-specific uncertainty requirements directly into navigation policies. We introduce Task-Specific Uncertainty Map (TSUM), which represents acceptable levels of state estimation uncertainty across different regions of the operating environment for a given task. Using TSUM, we propose Generalized Uncertainty Integration for Decision-Making and Execution (GUIDE), a policy conditioning framework that incorporates these uncertainty requirements into the robot's decision-making process. We find that conditioning policies on TSUMs provides an effective way to express task-specific uncertainty requirements and enables the robot to reason about the context-dependent value of certainty. We show how integrating GUIDE into reinforcement learning frameworks allows the agent to learn navigation policies without the need for explicit reward engineering to balance task completion and uncertainty management. We evaluate GUIDE on a variety of real-world navigation tasks and find that it demonstrates significant improvements in task completion rates compared to baselines. Evaluation videos can be found at https://guided-agents.github.io.
Related papers
- Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction.
variations in task content and complexity pose significant challenges in policy formulation.
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
arXiv Detail & Related papers (2024-11-02T05:49:14Z) - No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula promise to enable agents to be robust to in- and out-of-distribution tasks.
This work investigates how existing UED methods select training environments, focusing on task prioritisation metrics.
We develop a method that directly trains on scenarios with high learnability.
arXiv Detail & Related papers (2024-08-27T14:31:54Z) - Uncertainty-Aware Task Allocation for Distributed Autonomous Robots [3.8182527724852244]
This paper addresses task-allocation problems with uncertainty in situational awareness for distributed autonomous robots (DARs)
The uncertainty propagation over a task-allocation process is done by using the Unscented transform that uses the Sigma-Point sampling mechanism.
It has great potential to be employed for generic task-allocation schemes.
arXiv Detail & Related papers (2021-07-21T20:43:05Z) - Estimating Disentangled Belief about Hidden State and Hidden Task for
Meta-RL [27.78147889149745]
meta-reinforcement learning (meta-RL) algorithms enable autonomous agents to adapt new tasks from small amount of experience.
In meta-RL, the specification (such as reward function) of current task is hidden from the agent.
We propose estimating disentangled belief about task and states, leveraging an inductive bias that the task and states can be regarded as global and local features of each task.
arXiv Detail & Related papers (2021-05-14T06:11:36Z) - MPTP: Motion-Planning-aware Task Planning for Navigation in Belief Space [1.3535770763481902]
We present an integrated Task-Motion Planning framework for navigation in large-scale environments.
The framework is intended for motion planning under motion and sensing uncertainty.
arXiv Detail & Related papers (2021-04-10T06:52:16Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - One Solution is Not All You Need: Few-Shot Extrapolation via Structured
MaxEnt RL [142.36621929739707]
We show that learning diverse behaviors for accomplishing a task can lead to behavior that generalizes to varying environments.
By identifying multiple solutions for the task in a single environment during training, our approach can generalize to new situations.
arXiv Detail & Related papers (2020-10-27T17:41:57Z) - Adaptive Procedural Task Generation for Hard-Exploration Problems [78.20918366839399]
We introduce Adaptive Procedural Task Generation (APT-Gen) to facilitate reinforcement learning in hard-exploration problems.
At the heart of our approach is a task generator that learns to create tasks from a parameterized task space via a black-box procedural generation module.
To enable curriculum learning in the absence of a direct indicator of learning progress, we propose to train the task generator by balancing the agent's performance in the generated tasks and the similarity to the target tasks.
arXiv Detail & Related papers (2020-07-01T09:38:51Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Scalable Uncertainty for Computer Vision with Functional Variational
Inference [18.492485304537134]
We leverage the formulation of variational inference in function space.
We obtain predictive uncertainty estimates at the cost of a single forward pass through any chosen CNN architecture.
We propose numerically efficient algorithms which enable fast training in the context of high-dimensional tasks.
arXiv Detail & Related papers (2020-03-06T19:09:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.