FrameBridge: Improving Image-to-Video Generation with Bridge Models
- URL: http://arxiv.org/abs/2410.15371v1
- Date: Sun, 20 Oct 2024 12:10:24 GMT
- Title: FrameBridge: Improving Image-to-Video Generation with Bridge Models
- Authors: Yuji Wang, Zehua Chen, Xiaoyu Chen, Jun Zhu, Jianfei Chen,
- Abstract summary: Image-to-video (I2V) generation is gaining increasing attention with its wide application in video synthesis.
We present FrameBridge, taking the given static image as the prior of video target and establishing a tractable bridge model between them.
We propose two techniques, SNR- Fine-tuning (SAF) and neural prior, which improve the fine-tuning efficiency of diffusion-based T2V models to FrameBridge and the synthesis quality of bridge-based I2V models respectively.
- Score: 23.19370431940568
- License:
- Abstract: Image-to-video (I2V) generation is gaining increasing attention with its wide application in video synthesis. Recently, diffusion-based I2V models have achieved remarkable progress given their novel design on network architecture, cascaded framework, and motion representation. However, restricted by their noise-to-data generation process, diffusion-based methods inevitably suffer the difficulty to generate video samples with both appearance consistency and temporal coherence from an uninformative Gaussian noise, which may limit their synthesis quality. In this work, we present FrameBridge, taking the given static image as the prior of video target and establishing a tractable bridge model between them. By formulating I2V synthesis as a frames-to-frames generation task and modelling it with a data-to-data process, we fully exploit the information in input image and facilitate the generative model to learn the image animation process. In two popular settings of training I2V models, namely fine-tuning a pre-trained text-to-video (T2V) model or training from scratch, we further propose two techniques, SNR-Aligned Fine-tuning (SAF) and neural prior, which improve the fine-tuning efficiency of diffusion-based T2V models to FrameBridge and the synthesis quality of bridge-based I2V models respectively. Experiments conducted on WebVid-2M and UCF-101 demonstrate that: (1) our FrameBridge achieves superior I2V quality in comparison with the diffusion counterpart (zero-shot FVD 83 vs. 176 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101); (2) our proposed SAF and neural prior effectively enhance the ability of bridge-based I2V models in the scenarios of fine-tuning and training from scratch. Demo samples can be visited at: https://framebridge-demo.github.io/.
Related papers
- VideoGuide: Improving Video Diffusion Models without Training Through a Teacher's Guide [48.22321420680046]
VideoGuide is a novel framework that enhances the temporal consistency of pretrained text-to-video (T2V) models.
It improves temporal quality by interpolating the guiding model's denoised samples into the sampling model's denoising process.
The proposed method brings about significant improvement in temporal consistency and image fidelity.
arXiv Detail & Related papers (2024-10-06T05:46:17Z) - Let Video Teaches You More: Video-to-Image Knowledge Distillation using DEtection TRansformer for Medical Video Lesion Detection [91.97935118185]
We propose Video-to-Image knowledge distillation for the task of medical video lesion detection.
By distilling multi-frame contexts into a single frame, the proposed V2I-DETR combines the advantages of utilizing temporal contexts from video-based models and the inference speed of image-based models.
V2I-DETR outperforms previous state-of-the-art methods by a large margin while achieving the real-time inference speed (30 FPS) as the image-based model.
arXiv Detail & Related papers (2024-08-26T07:17:05Z) - AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction [88.70116693750452]
Text-guided video prediction (TVP) involves predicting the motion of future frames from the initial frame according to an instruction.
Previous TVP methods make significant breakthroughs by adapting Stable Diffusion for this task.
We introduce the Multi-Modal Large Language Model (MLLM) to predict future video states based on initial frames and text instructions.
arXiv Detail & Related papers (2024-06-10T17:02:08Z) - TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models [40.38379402600541]
TI2V-Zero is a zero-shot, tuning-free method that empowers a pretrained text-to-video (T2V) diffusion model to be conditioned on a provided image.
To guide video generation with the additional image input, we propose a "repeat-and-slide" strategy that modulates the reverse denoising process.
We conduct comprehensive experiments on both domain-specific and open-domain datasets, where TI2V-Zero consistently outperforms a recent open-domain TI2V model.
arXiv Detail & Related papers (2024-04-25T03:21:11Z) - I2V-Adapter: A General Image-to-Video Adapter for Diffusion Models [80.32562822058924]
Text-guided image-to-video (I2V) generation aims to generate a coherent video that preserves the identity of the input image.
I2V-Adapter adeptly propagates the unnoised input image to subsequent noised frames through a cross-frame attention mechanism.
Our experimental results demonstrate that I2V-Adapter is capable of producing high-quality videos.
arXiv Detail & Related papers (2023-12-27T19:11:50Z) - I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion
Models [54.99771394322512]
Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models.
It still challenges encounters in terms of semantic accuracy, clarity, and continuity-temporal continuity.
We propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors.
I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos.
arXiv Detail & Related papers (2023-11-07T17:16:06Z) - Preserve Your Own Correlation: A Noise Prior for Video Diffusion Models [52.93036326078229]
Off-the-shelf billion-scale datasets for image generation are available, but collecting similar video data of the same scale is still challenging.
In this work, we explore finetuning a pretrained image diffusion model with video data as a practical solution for the video synthesis task.
Our model, Preserve Your Own Correlation (PYoCo), attains SOTA zero-shot text-to-video results on the UCF-101 and MSR-VTT benchmarks.
arXiv Detail & Related papers (2023-05-17T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.