Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs
- URL: http://arxiv.org/abs/2410.15438v1
- Date: Sun, 20 Oct 2024 16:08:54 GMT
- Title: Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs
- Authors: Xin Zhou, Ping Nie, Yiwen Guo, Haojie Wei, Zhanqiu Zhang, Pasquale Minervini, Ruotian Ma, Tao Gui, Qi Zhang, Xuanjing Huang,
- Abstract summary: Internal mechanisms that contribute to the effectiveness of RAG systems remain underexplored.
Our experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors.
We propose several strategies to enhance RAG's efficiency and effectiveness through expert activation.
- Score: 64.9693406713216
- License:
- Abstract: Retrieval-Augmented Generation (RAG) significantly improved the ability of Large Language Models (LLMs) to solve knowledge-intensive tasks. While existing research seeks to enhance RAG performance by retrieving higher-quality documents or designing RAG-specific LLMs, the internal mechanisms within LLMs that contribute to the effectiveness of RAG systems remain underexplored. In this paper, we aim to investigate these internal mechanisms within the popular Mixture-of-Expert (MoE)-based LLMs and demonstrate how to improve RAG by examining expert activations in these LLMs. Our controlled experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors. The activation of these core experts can signify the model's inclination towards external/internal knowledge and adjust its behavior. For instance, we identify core experts that can (1) indicate the sufficiency of the model's internal knowledge, (2) assess the quality of retrieved documents, and (3) enhance the model's ability to utilize context. Based on these findings, we propose several strategies to enhance RAG's efficiency and effectiveness through expert activation. Experimental results across various datasets and MoE-based LLMs show the effectiveness of our method.
Related papers
- Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection [72.92366526004464]
Retrieval-Augmented Generation (RAG) has proven effective in enabling Large Language Models (LLMs) to produce more accurate and reliable responses.
We propose a novel Self-Selection RAG framework, where the LLM is made to select from pairwise responses generated with internal parametric knowledge solely.
arXiv Detail & Related papers (2025-02-10T04:29:36Z) - Quality Assurance for LLM-RAG Systems: Empirical Insights from Tourism Application Testing [0.0]
This paper presents a comprehensive framework for testing and evaluating quality characteristics of Large Language Model (LLM) systems enhanced with Retrieval-Augmented Generation (RAG)
We demonstrate the effectiveness of our testing methodology in assessing both functional correctness and extra-functional properties.
arXiv Detail & Related papers (2025-02-09T05:53:03Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [48.40768048080928]
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs)
This work aims to provide a systematic study on knowledge checking in RAG systems.
arXiv Detail & Related papers (2024-11-21T20:39:13Z) - Evaluating Self-Generated Documents for Enhancing Retrieval-Augmented Generation with Large Language Models [39.243030042003646]
We investigate the overall effectiveness of Self-Docs, identifying key factors that shape their contribution to RAG performance.
Building on these insights, we develop a taxonomy grounded in Systemic Functional Linguistics to compare the influence of various Self-Docs categories.
Our findings reveal which types of Self-Docs are most beneficial and offer practical guidelines for leveraging them.
arXiv Detail & Related papers (2024-10-17T03:38:54Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
Large language models (LLMs) have emerged as promising tools for solving challenging robotic tasks.
Most existing LLM-based agents lack the ability to retain and learn from past interactions.
We propose RAG-Modulo, a framework that enhances LLM-based agents with a memory of past interactions and incorporates critics to evaluate the agents' decisions.
arXiv Detail & Related papers (2024-09-18T20:03:32Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.