AssemblyComplete: 3D Combinatorial Construction with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2410.15469v1
- Date: Sun, 20 Oct 2024 18:51:17 GMT
- Title: AssemblyComplete: 3D Combinatorial Construction with Deep Reinforcement Learning
- Authors: Alan Chen, Changliu Liu,
- Abstract summary: A critical goal in robotics is to teach robots to adapt to real-world collaborative tasks, particularly in automatic assembly.
This paper introduces 3D assembly completion, which is demonstrated using unit primitives (i.e., Lego bricks)
We propose a two-part deep reinforcement learning (DRL) framework that tackles teaching the robot to understand the objective of an incomplete assembly and learning a construction policy to complete the assembly.
- Score: 4.3507834596906125
- License:
- Abstract: A critical goal in robotics and autonomy is to teach robots to adapt to real-world collaborative tasks, particularly in automatic assembly. The ability of a robot to understand the original intent of an incomplete assembly and complete missing features without human instruction is valuable but challenging. This paper introduces 3D combinatorial assembly completion, which is demonstrated using combinatorial unit primitives (i.e., Lego bricks). Combinatorial assembly is challenging due to the possible assembly combinations and complex physical constraints (e.g., no brick collisions, structure stability, inventory constraints, etc.). To address these challenges, we propose a two-part deep reinforcement learning (DRL) framework that tackles teaching the robot to understand the objective of an incomplete assembly and learning a construction policy to complete the assembly. The robot queries a stable object library to facilitate assembly inference and guide learning. In addition to the robot policy, an action mask is developed to rule out invalid actions that violate physical constraints for object-oriented construction. We demonstrate the proposed framework's feasibility and robustness in a variety of assembly scenarios in which the robot satisfies real-life assembly with respect to both solution and runtime quality. Furthermore, results demonstrate that the proposed framework effectively infers and assembles incomplete structures for unseen and unique object types.
Related papers
- Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly [45.03625198933637]
We present a system that transforms speech into physical objects by combining 3D generative Artificial Intelligence with robotic assembly.
We propose utilizing discrete robotic assembly of lattice-based voxel components to address the challenges of using generative AI outputs in physical production.
arXiv Detail & Related papers (2024-09-27T02:12:56Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Robotic Handling of Compliant Food Objects by Robust Learning from
Demonstration [79.76009817889397]
We propose a robust learning policy based on Learning from Demonstration (LfD) for robotic grasping of food compliant objects.
We present an LfD learning policy that automatically removes inconsistent demonstrations, and estimates the teacher's intended policy.
The proposed approach has a vast range of potential applications in the aforementioned industry sectors.
arXiv Detail & Related papers (2023-09-22T13:30:26Z) - Blocks Assemble! Learning to Assemble with Large-Scale Structured
Reinforcement Learning [23.85678777628229]
Assembly of multi-part physical structures is a valuable end product for autonomous robotics.
We introduce a naturalistic physics-based environment with a set of connectable magnet blocks inspired by children's toy kits.
We find that the combination of large-scale reinforcement learning and graph-based policies is an effective recipe for training agents.
arXiv Detail & Related papers (2022-03-15T18:21:02Z) - Graph-based Reinforcement Learning meets Mixed Integer Programs: An
application to 3D robot assembly discovery [34.25379651790627]
We tackle the problem of building arbitrary, predefined target structures entirely from scratch using a set of Tetris-like building blocks and a robotic manipulator.
Our novel hierarchical approach aims at efficiently decomposing the overall task into three feasible levels that benefit mutually from each other.
arXiv Detail & Related papers (2022-03-08T14:44:51Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
We present a framework for learning multi-arm manipulation of articulated objects.
Our framework includes a variational generative model that learns contact point distribution over object rigid parts for each robot arm.
arXiv Detail & Related papers (2021-11-07T02:31:09Z) - Towards Coordinated Robot Motions: End-to-End Learning of Motion
Policies on Transform Trees [63.31965375413414]
We propose to solve multi-task problems through learning structured policies from human demonstrations.
Our structured policy is inspired by RMPflow, a framework for combining subtask policies on different spaces.
We derive an end-to-end learning objective function that is suitable for the multi-task problem.
arXiv Detail & Related papers (2020-12-24T22:46:22Z) - Towards Robotic Assembly by Predicting Robust, Precise and Task-oriented
Grasps [17.07993278175686]
We propose a method to optimize for grasp, precision, and task performance by learning three cascaded networks.
We evaluate our method in simulation on three common assembly tasks: inserting gears onto pegs, aligning brackets into corners, and inserting shapes into slots.
arXiv Detail & Related papers (2020-11-04T18:29:01Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorld is a benchmark for causal structure and transfer learning in a robotic manipulation environment.
Tasks consist of constructing 3D shapes from a given set of blocks - inspired by how children learn to build complex structures.
arXiv Detail & Related papers (2020-10-08T23:01:13Z) - Learning 3D Part Assembly from a Single Image [20.175502864488493]
We introduce a novel problem, single-image-guided 3D part assembly, along with a learningbased solution.
We study this problem in the setting of furniture assembly from a given complete set of parts and a single image depicting the entire assembled object.
arXiv Detail & Related papers (2020-03-21T21:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.