Optimizing Backward Policies in GFlowNets via Trajectory Likelihood Maximization
- URL: http://arxiv.org/abs/2410.15474v1
- Date: Sun, 20 Oct 2024 19:12:14 GMT
- Title: Optimizing Backward Policies in GFlowNets via Trajectory Likelihood Maximization
- Authors: Timofei Gritsaev, Nikita Morozov, Sergey Samsonov, Daniil Tiapkin,
- Abstract summary: GFlowNets are a family of generative models that learn to sample objects proportional to a given reward function.
Recent results show a close relationship between GFlowNet training and entropy-regularized reinforcement learning problems.
We introduce a simple backward policy optimization algorithm that involves direct sequentially of the value function in an entropy-regularized Markov Decision Process.
- Score: 4.158255103170876
- License:
- Abstract: Generative Flow Networks (GFlowNets) are a family of generative models that learn to sample objects with probabilities proportional to a given reward function. The key concept behind GFlowNets is the use of two stochastic policies: a forward policy, which incrementally constructs compositional objects, and a backward policy, which sequentially deconstructs them. Recent results show a close relationship between GFlowNet training and entropy-regularized reinforcement learning (RL) problems with a particular reward design. However, this connection applies only in the setting of a fixed backward policy, which might be a significant limitation. As a remedy to this problem, we introduce a simple backward policy optimization algorithm that involves direct maximization of the value function in an entropy-regularized Markov Decision Process (MDP) over intermediate rewards. We provide an extensive experimental evaluation of the proposed approach across various benchmarks in combination with both RL and GFlowNet algorithms and demonstrate its faster convergence and mode discovery in complex environments.
Related papers
- Rectifying Reinforcement Learning for Reward Matching [12.294107455811496]
We establish a new connection between GFlowNets and policy evaluation for a uniform policy.
We propose a novel rectified policy evaluation algorithm, which achieves the same reward-matching effect as GFlowNets.
arXiv Detail & Related papers (2024-06-04T11:11:53Z) - Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets [27.33222647437964]
Generative Flow Networks (GFlowNets) are amortized sampling methods for learning a policy to sequentially generate objects with probabilities to their rewards.
GFlowNets exhibit a remarkable ability to generate diverse sets of high-reward proportional objects, in contrast to standard reinforcement learning approaches.
Recent works have arisen for learning goal-conditioned GFlowNets to acquire various useful properties, aiming to train a single GFlowNet capable of achieving different goals as the task specifies.
We propose a novel method named Retrospective Backward Synthesis (RBS) to address these challenges. Specifically, RBS synthesizes a new backward trajectory
arXiv Detail & Related papers (2024-06-03T09:44:10Z) - Discrete Probabilistic Inference as Control in Multi-path Environments [84.67055173040107]
We consider the problem of sampling from a discrete and structured distribution as a sequential decision problem.
We show that GFlowNets learn a policy that samples objects proportionally to their reward by enforcing a conservation of flows.
We also prove that some flow-matching objectives found in the GFlowNet literature are in fact equivalent to well-established MaxEnt RL algorithms with a corrected reward.
arXiv Detail & Related papers (2024-02-15T20:20:35Z) - Generative Flow Networks as Entropy-Regularized RL [4.857649518812728]
generative flow networks (GFlowNets) are a method of training a policy to sample compositional objects with proportional probabilities to a given reward via a sequence of actions.
We demonstrate how the task of learning a generative flow network can be efficiently as an entropy-regularized reinforcement learning problem.
Contrary to previously reported results, we show that entropic RL approaches can be competitive against established GFlowNet training methods.
arXiv Detail & Related papers (2023-10-19T17:31:40Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.
We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
arXiv Detail & Related papers (2023-06-30T14:19:44Z) - Stochastic Generative Flow Networks [89.34644133901647]
Generative Flow Networks (or GFlowNets) learn to sample complex structures through the lens of "inference as control"
Existing GFlowNets can be applied only to deterministic environments, and fail in more general tasks with dynamics.
This paper introduces GFlowNets, a new algorithm that extends GFlowNets to environments.
arXiv Detail & Related papers (2023-02-19T03:19:40Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks (GFlowNets) are a new family of probabilistic samplers where an agent learns a policy for generating complex structure through a series of decision-making steps.
In this work, we adopt a distributional paradigm for GFlowNets, turning each flow function into a distribution, thus providing more informative learning signals during training.
Our proposed textitquantile matching GFlowNet learning algorithm is able to learn a risk-sensitive policy, an essential component for handling scenarios with risk uncertainty.
arXiv Detail & Related papers (2023-02-11T22:06:17Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
This paper is about the problem of learning a policy for generating an object from a sequence of actions.
We propose GFlowNet, based on a view of the generative process as a flow network.
We prove that any global minimum of the proposed objectives yields a policy which samples from the desired distribution.
arXiv Detail & Related papers (2021-06-08T14:21:10Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.