CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation
- URL: http://arxiv.org/abs/2410.15592v2
- Date: Wed, 23 Oct 2024 14:08:10 GMT
- Title: CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation
- Authors: Wenrui Gou, Wenhui Ge, Yang Tan, Mingchen Li, Guisheng Fan, Huiqun Yu,
- Abstract summary: We develop a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro)
CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes.
We utilize Foldseek to encode protein structures into "structure-sequences" and trained a protein Structural Sequence Language Model, SSLM.
- Score: 7.161099050722313
- License:
- Abstract: Protein structures are important for understanding their functions and interactions. Currently, many protein structure prediction methods are enriching the structure database. Discriminating the origin of structures is crucial for distinguishing between experimentally resolved and computationally predicted structures, evaluating the reliability of prediction methods, and guiding downstream biological studies. Building on works in structure prediction, We developed a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro), to represent and discriminate the origin of protein structures. CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes, and is expected to be extended to more. Simultaneously, we utilized Foldseek to encode protein structures into "structure-sequences" and trained a protein Structural Sequence Language Model, SSLM. Preliminary experiments demonstrated that, compared to large-scale protein language models pre-trained on vast amounts of amino acid sequences, the "structure-sequence" enables the language model to learn more informative protein features, enhancing and optimizing structural representations. We have provided the code, model weights, and all related materials on https://github.com/GouWenrui/CPE-Pro-main.git.
Related papers
- Protein Representation Learning with Sequence Information Embedding: Does it Always Lead to a Better Performance? [4.7077642423577775]
We propose ProtLOCA, a local geometry alignment method based solely on amino acid structure representation.
Our method outperforms existing sequence- and structure-based representation learning methods by more quickly and accurately matching structurally consistent protein domains.
arXiv Detail & Related papers (2024-06-28T08:54:37Z) - A Protein Structure Prediction Approach Leveraging Transformer and CNN
Integration [4.909112037834705]
This paper adopts a two-dimensional fusion deep neural network model, DstruCCN, which uses Convolutional Neural Networks (CCN) and a supervised Transformer protein language model for single-sequence protein structure prediction.
The training features of the two are combined to predict the protein Transformer binding site matrix, and then the three-dimensional structure is reconstructed using energy minimization.
arXiv Detail & Related papers (2024-02-29T12:24:20Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
We introduce a novel framework that enhances protein language models by integrating protein structural data.
The refined model, termed Protein Structure Transformer (PST), is further pretrained on a small protein structure database.
PST consistently outperforms the state-of-the-art foundation model for protein sequences, ESM-2, setting a new benchmark in protein function prediction.
arXiv Detail & Related papers (2024-01-26T12:47:54Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
Protein structure-based property prediction has emerged as a promising approach for various biological tasks.
Current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy.
Our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures.
arXiv Detail & Related papers (2023-10-14T08:43:42Z) - CCPL: Cross-modal Contrastive Protein Learning [47.095862120116976]
We introduce a novel unsupervised protein structure representation pretraining method, cross-modal contrastive protein learning (CCPL)
CCPL leverages a robust protein language model and uses unsupervised contrastive alignment to enhance structure learning.
We evaluated our model across various benchmarks, demonstrating the framework's superiority.
arXiv Detail & Related papers (2023-03-19T08:19:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.