Procedural Content Generation in Games: A Survey with Insights on Emerging LLM Integration
- URL: http://arxiv.org/abs/2410.15644v1
- Date: Mon, 21 Oct 2024 05:10:13 GMT
- Title: Procedural Content Generation in Games: A Survey with Insights on Emerging LLM Integration
- Authors: Mahdi Farrokhi Maleki, Richard Zhao,
- Abstract summary: Procedural Content Generation (PCG) is defined as the automatic creation of game content using algorithms.
It can increase player engagement and ease the work of game designers.
Recent advances in deep learning approaches in PCG have enabled researchers and practitioners to create more sophisticated content.
It is the arrival of Large Language Models (LLMs) that truly disrupted the trajectory of PCG advancement.
- Score: 1.03590082373586
- License:
- Abstract: Procedural Content Generation (PCG) is defined as the automatic creation of game content using algorithms. PCG has a long history in both the game industry and the academic world. It can increase player engagement and ease the work of game designers. While recent advances in deep learning approaches in PCG have enabled researchers and practitioners to create more sophisticated content, it is the arrival of Large Language Models (LLMs) that truly disrupted the trajectory of PCG advancement. This survey explores the differences between various algorithms used for PCG, including search-based methods, machine learning-based methods, other frequently used methods (e.g., noise functions), and the newcomer, LLMs. We also provide a detailed discussion on combined methods. Furthermore, we compare these methods based on the type of content they generate and the publication dates of their respective papers. Finally, we identify gaps in the existing academic work and suggest possible directions for future research.
Related papers
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - Masked Image Modeling: A Survey [73.21154550957898]
Masked image modeling emerged as a powerful self-supervised learning technique in computer vision.
We construct a taxonomy and review the most prominent papers in recent years.
We aggregate the performance results of various masked image modeling methods on the most popular datasets.
arXiv Detail & Related papers (2024-08-13T07:27:02Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio.
We summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods.
We dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction.
arXiv Detail & Related papers (2024-05-29T17:59:20Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - Procedural Content Generation via Knowledge Transformation (PCG-KT) [8.134009219520289]
We introduce the concept of Procedural Content Generation via Knowledge Transformation (PCG-KT)
Our work is motivated by a substantial number of recent PCG works that focus on generating novel content via repurposing derived knowledge.
arXiv Detail & Related papers (2023-05-01T03:31:22Z) - Tools for Landscape Analysis of Optimisation Problems in Procedural
Content Generation for Games [0.6882042556551609]
Procedural Content Generation (PCG) refers to the (semi-)automatic generation of game content by algorithmic means.
A special class of these methods, which is commonly known as search-based PCG, treats the given task as an optimisation problem.
We will demonstrate in this paper that obtaining more information about the defined optimisation problem can substantially improve our understanding of how to approach the generation of content.
arXiv Detail & Related papers (2023-02-16T18:38:36Z) - TegTok: Augmenting Text Generation via Task-specific and Open-world
Knowledge [83.55215993730326]
We propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework.
Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively.
arXiv Detail & Related papers (2022-03-16T10:37:59Z) - Deep Learning for Procedural Content Generation [14.533560910477693]
A research field centered on content generation in games has existed for more than a decade.
Deep learning has powered a remarkable range of inventions in content production.
This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly.
arXiv Detail & Related papers (2020-10-09T13:08:37Z) - Capturing Local and Global Patterns in Procedural Content Generation via
Machine Learning [9.697217570243845]
Recent procedural content generation via machine learning (PCGML) methods allow learning to produce similar content from existing content.
It is an open questions how well these approaches can capture large-scale visual patterns such as symmetry.
In this paper, we propose to match-three games as a domain to test PCGML algorithms regarding their ability to generate suitable patterns.
arXiv Detail & Related papers (2020-05-26T08:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.