Learning to Synthesize Graphics Programs for Geometric Artworks
- URL: http://arxiv.org/abs/2410.15768v1
- Date: Mon, 21 Oct 2024 08:28:11 GMT
- Title: Learning to Synthesize Graphics Programs for Geometric Artworks
- Authors: Qi Bing, Chaoyi Zhang, Weidong Cai,
- Abstract summary: We present an approach that treats a set of drawing tools as executable programs.
This method predicts a sequence of steps to achieve the final image.
Experiments demonstrate that our program synthesizer, Art2Prog, can comprehensively understand complex input images.
- Score: 12.82009632507056
- License:
- Abstract: Creating and understanding art has long been a hallmark of human ability. When presented with finished digital artwork, professional graphic artists can intuitively deconstruct and replicate it using various drawing tools, such as the line tool, paint bucket, and layer features, including opacity and blending modes. While most recent research in this field has focused on art generation, proposing a range of methods, these often rely on the concept of artwork being represented as a final image. To bridge the gap between pixel-level results and the actual drawing process, we present an approach that treats a set of drawing tools as executable programs. This method predicts a sequence of steps to achieve the final image, allowing for understandable and resolution-independent reproductions under the usage of a set of drawing commands. Our experiments demonstrate that our program synthesizer, Art2Prog, can comprehensively understand complex input images and reproduce them using high-quality executable programs. The experimental results evidence the potential of machines to grasp higher-level information from images and generate compact program-level descriptions.
Related papers
- PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions [66.92809850624118]
PixWizard is an image-to-image visual assistant designed for image generation, manipulation, and translation based on free-from language instructions.
We tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning dataset.
Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions.
arXiv Detail & Related papers (2024-09-23T17:59:46Z) - Alfie: Democratising RGBA Image Generation With No $$$ [33.334956022229846]
We propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model.
We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes.
arXiv Detail & Related papers (2024-08-27T07:13:44Z) - ProcessPainter: Learn Painting Process from Sequence Data [27.9875429986135]
The painting process of artists is inherently stepwise and varies significantly among different painters and styles.
Traditional stroke-based rendering methods break down images into sequences of brushstrokes, yet they fall short of replicating the authentic processes of artists.
We introduce ProcessPainter, a text-to-video model that is initially pre-trained on synthetic data and subsequently fine-tuned with a select set of artists' painting sequences.
arXiv Detail & Related papers (2024-06-10T07:18:41Z) - Towards Interactive Image Inpainting via Sketch Refinement [13.34066589008464]
We propose a two-stage image inpainting method termed SketchRefiner.
In the first stage, we propose using a cross-correlation loss function to robustly calibrate and refine the user-provided sketches.
In the second stage, we learn to extract informative features from the abstracted sketches in the feature space and modulate the inpainting process.
arXiv Detail & Related papers (2023-06-01T07:15:54Z) - Semantic-aware Generation of Multi-view Portrait Drawings [16.854527555637063]
We propose a Semantic-Aware GEnerator (SAGE) for synthesizing multi-view portrait drawings.
Our motivation is that facial semantic labels are view-consistent and correlate with drawing techniques.
SAGE achieves significantly superior or highly competitive performance, compared to existing 3D-aware image synthesis methods.
arXiv Detail & Related papers (2023-05-04T07:48:27Z) - Procedural Image Programs for Representation Learning [62.557911005179946]
We propose training with a large dataset of twenty-one thousand programs, each one generating a diverse set of synthetic images.
These programs are short code snippets, which are easy to modify and fast to execute using.
The proposed dataset can be used for both supervised and unsupervised representation learning, and reduces the gap between pre-training with real and procedurally generated images by 38%.
arXiv Detail & Related papers (2022-11-29T17:34:22Z) - I Know What You Draw: Learning Grasp Detection Conditioned on a Few
Freehand Sketches [74.63313641583602]
We propose a method to generate a potential grasp configuration relevant to the sketch-depicted objects.
Our model is trained and tested in an end-to-end manner which is easy to be implemented in real-world applications.
arXiv Detail & Related papers (2022-05-09T04:23:36Z) - Generative Art Using Neural Visual Grammars and Dual Encoders [25.100664361601112]
A novel algorithm for producing generative art is described.
It allows a user to input a text string, and which in a creative response to this string, outputs an image.
arXiv Detail & Related papers (2021-05-01T04:21:52Z) - DeepFacePencil: Creating Face Images from Freehand Sketches [77.00929179469559]
Existing image-to-image translation methods require a large-scale dataset of paired sketches and images for supervision.
We propose DeepFacePencil, an effective tool that is able to generate photo-realistic face images from hand-drawn sketches.
arXiv Detail & Related papers (2020-08-31T03:35:21Z) - SketchyCOCO: Image Generation from Freehand Scene Sketches [71.85577739612579]
We introduce the first method for automatic image generation from scene-level freehand sketches.
Key contribution is an attribute vector bridged Geneversarative Adrial Network called EdgeGAN.
We have built a large-scale composite dataset called SketchyCOCO to support and evaluate the solution.
arXiv Detail & Related papers (2020-03-05T14:54:10Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
Sketch-based image editing aims to synthesize and modify photos based on the structural information provided by the human-drawn sketches.
Deep Plastic Surgery is a novel, robust and controllable image editing framework that allows users to interactively edit images using hand-drawn sketch inputs.
arXiv Detail & Related papers (2020-01-09T08:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.